Generative AI systems have become ubiquitous for all kinds of modalities, which makes the issue of the evaluation of such models more pressing. One popular approach is preference ratings, where the generated outputs of different systems are shown to evaluators who choose their preferences. In recent years the field shifted towards the development of automated (trained) metrics to assess generated outputs, which can be used to create preference ratings automatically. In this work, we investigate the evaluation of the metrics themselves, which currently rely on measuring the correlation to human judgments or computing sign accuracy scores. These measures only assess how well the metric agrees with the human ratings. However, our research shows that this does not tell the whole story. Most metrics exhibit a disagreement with human system assessments which is often skewed in favor of particular text generation systems, exposing a degree of favoritism in automated metrics. This paper introduces a formal definition of favoritism in preference metrics, and derives the Favi-Score, which measures this phenomenon. In particular we show that favoritism is strongly related to errors in final system rankings. Thus, we propose that preference-based metrics ought to be evaluated on both sign accuracy scores and favoritism.
A major challenge in the field of Text Generation is evaluation: Human evaluations are cost-intensive, and automated metrics often display considerable disagreements with human judgments. In this paper, we propose to apply automated metrics for Text Generation in a preference-based evaluation protocol. The protocol features a statistical model that incorporates various levels of uncertainty to account for the error-proneness of the metrics. We show that existing metrics are generally over-confident in assigning significant differences between systems. As a remedy, the model allows to combine human ratings with automated ratings. We show that it can reduce the required amounts of human ratings to arrive at robust and statistically significant results by more than 50%, while yielding the same evaluation outcome as the pure human evaluation in 95% of cases. We showcase the benefits of the evaluation protocol for three text generation tasks: dialogue systems, machine translation, and text summarization.
This paper introduces an adversarial method to stress-test trained metrics for the evaluation of conversational dialogue systems. The method leverages Reinforcement Learning to find response strategies that elicit optimal scores from the trained metrics. We apply our method to test recently proposed trained metrics. We find that they all are susceptible to giving high scores to responses generated by rather simple and obviously flawed strategies that our method converges on. For instance, simply copying parts of the conversation context to form a response yields competitive scores or even outperforms responses written by humans.
A major challenge in the field of Text Generation is evaluation, because we lack a sound theory that can be leveraged to extract guidelines for evaluation campaigns. In this work, we propose a first step towards such a theory that incorporates different sources of uncertainty, such as imperfect automated metrics and insufficiently sized test sets. The theory has practical applications, such as determining the number of samples needed to reliably distinguish the performance of a set of Text Generation systems in a given setting. We showcase the application of the theory on the WMT 21 and Spot-The-Bot evaluation data and outline how it can be leveraged to improve the evaluation protocol regarding the reliability, robustness, and significance of the evaluation outcome.
Dialogue summarization is a long-standing task in the field of NLP, and several data sets with dialogues and associated human-written summaries of different styles exist. However, it is unclear for which type of dialogue which type of summary is most appropriate. For this reason, we apply a linguistic model of dialogue types to derive matching summary items and NLP tasks. This allows us to map existing dialogue summarization data sets into this model and identify gaps and potential directions for future work. As part of this process, we also provide an extensive overview of existing dialogue summarization data sets.
We present LEDGAR, a multilabel corpus of legal provisions in contracts. The corpus was crawled and scraped from the public domain (SEC filings) and is, to the best of our knowledge, the first freely available corpus of its kind. Since the corpus was constructed semi-automatically, we apply and discuss various approaches to noise removal. Due to the rather large labelset of over 12’000 labels annotated in almost 100’000 provisions in over 60’000 contracts, we believe the corpus to be of interest for research in the field of Legal NLP, (large-scale or extreme) text classification, as well as for legal studies. We discuss several methods to sample subcopora from the corpus and implement and evaluate different automatic classification approaches. Finally, we perform transfer experiments to evaluate how well the classifiers perform on contracts stemming from outside the corpus.
The lack of time efficient and reliable evalu-ation methods is hampering the development of conversational dialogue systems (chat bots). Evaluations that require humans to converse with chat bots are time and cost intensive, put high cognitive demands on the human judges, and tend to yield low quality results. In this work, we introduce Spot The Bot, a cost-efficient and robust evaluation framework that replaces human-bot conversations with conversations between bots. Human judges then only annotate for each entity in a conversation whether they think it is human or not (assuming there are humans participants in these conversations). These annotations then allow us to rank chat bots regarding their ability to mimic conversational behaviour of humans. Since we expect that all bots are eventually recognized as such, we incorporate a metric that measures which chat bot is able to uphold human-like be-havior the longest, i.e.Survival Analysis. This metric has the ability to correlate a bot’s performance to certain of its characteristics (e.g.fluency or sensibleness), yielding interpretable results. The comparably low cost of our frame-work allows for frequent evaluations of chatbots during their evaluation cycle. We empirically validate our claims by applying Spot The Bot to three domains, evaluating several state-of-the-art chat bots, and drawing comparisonsto related work. The framework is released asa ready-to-use tool.
This paper proposes a generic method for the comparative evaluation of system outputs. The approach is able to quantify the pairwise differences between two outputs and to unravel in detail what the differences consist of. We apply our approach to three tasks in Computational Linguistics, i.e. POS tagging, dependency parsing, and coreference resolution. We find that system outputs are more distinct than the (often) small differences in evaluation scores seem to suggest.
We implement a fully probabilistic model to combine the hypotheses of a Spanish anaphora resolution system with those of a Spanish-English machine translation system. The probabilities over antecedents are converted into probabilities for the features of translated pronouns, and are integrated with phrase-based MT using an additional translation model for pronouns. The system improves the translation of several Spanish personal and possessive pronouns into English, by solving translation divergencies such as ‘ella’ vs. ‘she’/‘it’ or ‘su’ vs. ‘his’/‘her’/‘its’/‘their’. On a test set with 2,286 pronouns, a baseline system correctly translates 1,055 of them, while ours improves this by 41. Moreover, with oracle antecedents, possessives are translated with an accuracy of 83%.
This paper presents a straightforward method to integrate co-reference information into phrase-based machine translation to address the problems of i) elided subjects and ii) morphological underspecification of pronouns when translating from pro-drop languages. We evaluate the method for the language pair Spanish-English and find that translation quality improves with the addition of co-reference information.
We argue that in order to detect stance, not only the explicit attitudes of the stance holder towards the targets are crucial. It is the whole narrative the writer drafts that counts, including the way he hypostasizes the discourse referents: as benefactors or villains, as victims or beneficiaries. We exemplify the ability of our system to identify targets and detect the writer’s stance towards them on the basis of about 100 000 Facebook posts of a German right-wing party. A reader and writer model on top of our verb-based attitude extraction directly reveal stance conflicts.