2025
pdf
bib
abs
Beyond Input Activations: Identifying Influential Latents by Gradient Sparse Autoencoders
Dong Shu
|
Xuansheng Wu
|
Haiyan Zhao
|
Mengnan Du
|
Ninghao Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Sparse Autoencoders (SAEs) have recently emerged as powerful tools for interpreting and steering the internal representations of large language models (LLMs). However, conventional approaches to analyzing SAEs typically rely solely on input-side activations, without considering the influence between each latent feature and the model’s output. This work is built on two key hypotheses: (1) activated latents do not contribute equally to the construction of the model’s output, and (2) only latents with high influence are effective for model steering. To validate these hypotheses, we propose Gradient Sparse Autoencoder (GradSAE), a simple yet effective method that identifies the most influential latents by incorporating output-side gradient information.
pdf
bib
abs
Improving LLM Reasoning through Interpretable Role-Playing Steering
Anyi Wang
|
Dong Shu
|
Yifan Wang
|
Yunpu Ma
|
Mengnan Du
Findings of the Association for Computational Linguistics: EMNLP 2025
Role-playing has emerged as an effective technique for enhancing the reasoning capabilities of large language models (LLMs). However, existing methods primarily rely on prompt engineering, which often lacks stability and interpretability. In this paper, we introduce Sparse Autoencoder Role-Playing Steering (SRPS), a novel framework that identifies and manipulates internal model features associated with role-playing behavior. Our approach extracts latent representations from role-play prompts, selects the most relevant features based on activation patterns, and constructs a steering vector that can be injected into the model’s residual stream with controllable intensity. Our method enables fine-grained control over role-specific behavior and offers insights into how role information influences internal model activations. Extensive experiments across various reasoning benchmarks and model sizes demonstrate consistent performance gains. Notably, in the zero-shot chain-of-thought (CoT) setting, the accuracy of Llama3.1-8B on CSQA improves from 31.86% to 39.80%, while Gemma2-9B on SVAMP increases from 37.50% to 45.10%. These results highlight the potential of SRPS to enhance reasoning ability in LLMs, providing better interpretability and stability compared to traditional prompt-based role-playing.
pdf
bib
abs
A Survey on Sparse Autoencoders: Interpreting the Internal Mechanisms of Large Language Models
Dong Shu
|
Xuansheng Wu
|
Haiyan Zhao
|
Daking Rai
|
Ziyu Yao
|
Ninghao Liu
|
Mengnan Du
Findings of the Association for Computational Linguistics: EMNLP 2025
Large Language Models (LLMs) have transformed natural language processing, yet their internal mechanisms remain largely opaque. Recently, mechanistic interpretability has attracted significant attention from the research community as a means to understand the inner workings of LLMs. Among various mechanistic interpretability approaches, Sparse Autoencoders (SAEs) have emerged as a promising method due to their ability to disentangle the complex, superimposed features within LLMs into more interpretable components. This paper presents a comprehensive survey of SAEs for interpreting and understanding the internal workings of LLMs. Our major contributions include: (1) exploring the technical framework of SAEs, covering basic architecture, design improvements, and effective training strategies; (2) examining different approaches to explaining SAE features, categorized into input-based and output-based explanation methods; (3) discussing evaluation methods for assessing SAE performance, covering both structural and functional metrics; and (4) investigating real-world applications of SAEs in understanding and manipulating LLM behaviors.
pdf
bib
abs
Large Vision-Language Model Alignment and Misalignment: A Survey Through the Lens of Explainability
Dong Shu
|
Haiyan Zhao
|
Jingyu Hu
|
Weiru Liu
|
Ali Payani
|
Lu Cheng
|
Mengnan Du
Findings of the Association for Computational Linguistics: EMNLP 2025
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in processing both visual and textual information. However, the critical challenge of alignment between visual and textual representations is not fully understood. This survey presents a comprehensive examination of alignment and misalignment in LVLMs through an explainability lens. We first examine the fundamentals of alignment, exploring its representational and behavioral aspects, training methodologies, and theoretical foundations. We then analyze misalignment phenomena across three semantic levels: object, attribute, and relational misalignment. Our investigation reveals that misalignment emerges from challenges at multiple levels: the data level, the model level, and the inference level. We provide a comprehensive review of existing mitigation strategies, categorizing them into parameter-frozen and parameter-tuning approaches. Finally, we outline promising future research directions, emphasizing the need for standardized evaluation protocols and in-depth explainability studies.
2024
pdf
bib
abs
The Impact of Reasoning Step Length on Large Language Models
Mingyu Jin
|
Qinkai Yu
|
Dong Shu
|
Haiyan Zhao
|
Wenyue Hua
|
Yanda Meng
|
Yongfeng Zhang
|
Mengnan Du
Findings of the Association for Computational Linguistics: ACL 2024
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs’ reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs’ potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.