Dongfang Xu


pdf bib
Triplet-Trained Vector Space and Sieve-Based Search Improve Biomedical Concept Normalization
Dongfang Xu | Steven Bethard
Proceedings of the 20th Workshop on Biomedical Language Processing

Concept normalization, the task of linking textual mentions of concepts to concepts in an ontology, is critical for mining and analyzing biomedical texts. We propose a vector-space model for concept normalization, where mentions and concepts are encoded via transformer networks that are trained via a triplet objective with online hard triplet mining. The transformer networks refine existing pre-trained models, and the online triplet mining makes training efficient even with hundreds of thousands of concepts by sampling training triples within each mini-batch. We introduce a variety of strategies for searching with the trained vector-space model, including approaches that incorporate domain-specific synonyms at search time with no model retraining. Across five datasets, our models that are trained only once on their corresponding ontologies are within 3 points of state-of-the-art models that are retrained for each new domain. Our models can also be trained for each domain, achieving new state-of-the-art on multiple datasets.


pdf bib
A Generate-and-Rank Framework with Semantic Type Regularization for Biomedical Concept Normalization
Dongfang Xu | Zeyu Zhang | Steven Bethard
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Concept normalization, the task of linking textual mentions of concepts to concepts in an ontology, is challenging because ontologies are large. In most cases, annotated datasets cover only a small sample of the concepts, yet concept normalizers are expected to predict all concepts in the ontology. In this paper, we propose an architecture consisting of a candidate generator and a list-wise ranker based on BERT. The ranker considers pairings of concept mentions and candidate concepts, allowing it to make predictions for any concept, not just those seen during training. We further enhance this list-wise approach with a semantic type regularizer that allows the model to incorporate semantic type information from the ontology during training. Our proposed concept normalization framework achieves state-of-the-art performance on multiple datasets.

pdf bib
Multi-class Hierarchical Question Classification for Multiple Choice Science Exams
Dongfang Xu | Peter Jansen | Jaycie Martin | Zhengnan Xie | Vikas Yadav | Harish Tayyar Madabushi | Oyvind Tafjord | Peter Clark
Proceedings of the 12th Language Resources and Evaluation Conference

Prior work has demonstrated that question classification (QC), recognizing the problem domain of a question, can help answer it more accurately. However, developing strong QC algorithms has been hindered by the limited size and complexity of annotated data available. To address this, we present the largest challenge dataset for QC, containing 7,787 science exam questions paired with detailed classification labels from a fine-grained hierarchical taxonomy of 406 problem domains. We then show that a BERT-based model trained on this dataset achieves a large (+0.12 MAP) gain compared with previous methods, while also achieving state-of-the-art performance on benchmark open-domain and biomedical QC datasets. Finally, we show that using this model’s predictions of question topic significantly improves the accuracy of a question answering system by +1.7% P@1, with substantial future gains possible as QC performance improves.


pdf bib
Pre-trained Contextualized Character Embeddings Lead to Major Improvements in Time Normalization: a Detailed Analysis
Dongfang Xu | Egoitz Laparra | Steven Bethard
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)

Recent studies have shown that pre-trained contextual word embeddings, which assign the same word different vectors in different contexts, improve performance in many tasks. But while contextual embeddings can also be trained at the character level, the effectiveness of such embeddings has not been studied. We derive character-level contextual embeddings from Flair (Akbik et al., 2018), and apply them to a time normalization task, yielding major performance improvements over the previous state-of-the-art: 51% error reduction in news and 33% in clinical notes. We analyze the sources of these improvements, and find that pre-trained contextual character embeddings are more robust to term variations, infrequent terms, and cross-domain changes. We also quantify the size of context that pre-trained contextual character embeddings take advantage of, and show that such embeddings capture features like part-of-speech and capitalization.


pdf bib
From Characters to Time Intervals: New Paradigms for Evaluation and Neural Parsing of Time Normalizations
Egoitz Laparra | Dongfang Xu | Steven Bethard
Transactions of the Association for Computational Linguistics, Volume 6

This paper presents the first model for time normalization trained on the SCATE corpus. In the SCATE schema, time expressions are annotated as a semantic composition of time entities. This novel schema favors machine learning approaches, as it can be viewed as a semantic parsing task. In this work, we propose a character level multi-output neural network that outperforms previous state-of-the-art built on the TimeML schema. To compare predictions of systems that follow both SCATE and TimeML, we present a new scoring metric for time intervals. We also apply this new metric to carry out a comparative analysis of the annotations of both schemes in the same corpus.

pdf bib
SemEval 2018 Task 6: Parsing Time Normalizations
Egoitz Laparra | Dongfang Xu | Ahmed Elsayed | Steven Bethard | Martha Palmer
Proceedings of The 12th International Workshop on Semantic Evaluation

This paper presents the outcomes of the Parsing Time Normalization shared task held within SemEval-2018. The aim of the task is to parse time expressions into the compositional semantic graphs of the Semantically Compositional Annotation of Time Expressions (SCATE) schema, which allows the representation of a wider variety of time expressions than previous approaches. Two tracks were included, one to evaluate the parsing of individual components of the produced graphs, in a classic information extraction way, and another one to evaluate the quality of the time intervals resulting from the interpretation of those graphs. Though 40 participants registered for the task, only one team submitted output, achieving 0.55 F1 in Track 1 (parsing) and 0.70 F1 in Track 2 (intervals).