Donghan Yu


2022

pdf bib
KG-FiD: Infusing Knowledge Graph in Fusion-in-Decoder for Open-Domain Question Answering
Donghan Yu | Chenguang Zhu | Yuwei Fang | Wenhao Yu | Shuohang Wang | Yichong Xu | Xiang Ren | Yiming Yang | Michael Zeng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current Open-Domain Question Answering (ODQA) models typically include a retrieving module and a reading module, where the retriever selects potentially relevant passages from open-source documents for a given question, and the reader produces an answer based on the retrieved passages. The recently proposed Fusion-in-Decoder (FiD) framework is a representative example, which is built on top of a dense passage retriever and a generative reader, achieving the state-of-the-art performance. In this paper we further improve the FiD approach by introducing a knowledge-enhanced version, namely KG-FiD. Our new model uses a knowledge graph to establish the structural relationship among the retrieved passages, and a graph neural network (GNN) to re-rank the passages and select only a top few for further processing. Our experiments on common ODQA benchmark datasets (Natural Questions and TriviaQA) demonstrate that KG-FiD can achieve comparable or better performance in answer prediction than FiD, with less than 40% of the computation cost.

pdf bib
Dict-BERT: Enhancing Language Model Pre-training with Dictionary
Wenhao Yu | Chenguang Zhu | Yuwei Fang | Donghan Yu | Shuohang Wang | Yichong Xu | Michael Zeng | Meng Jiang
Findings of the Association for Computational Linguistics: ACL 2022

Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on large-scale corpora. Since PLMs capture word semantics in different contexts, the quality of word representations highly depends on word frequency, which usually follows a heavy-tailed distributions in the pre-training corpus. Therefore, the embeddings of rare words on the tail are usually poorly optimized. In this work, we focus on enhancing language model pre-training by leveraging definitions of the rare words in dictionaries (e.g., Wiktionary). To incorporate a rare word definition as a part of input, we fetch its definition from the dictionary and append it to the end of the input text sequence. In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions to enhance language modeling representation with dictionary. We evaluate the proposed Dict-BERT model on the language understanding benchmark GLUE and eight specialized domain benchmark datasets. Extensive experiments demonstrate that Dict-BERT can significantly improve the understanding of rare words and boost model performance on various NLP downstream tasks.