Donghwan Kim


pdf bib
Effective Crowdsourcing of Multiple Tasks for Comprehensive Knowledge Extraction
Sangha Nam | Minho Lee | Donghwan Kim | Kijong Han | Kuntae Kim | Sooji Yoon | Eun-kyung Kim | Key-Sun Choi
Proceedings of the Twelfth Language Resources and Evaluation Conference

Information extraction from unstructured texts plays a vital role in the field of natural language processing. Although there has been extensive research into each information extraction task (i.e., entity linking, coreference resolution, and relation extraction), data are not available for a continuous and coherent evaluation of all information extraction tasks in a comprehensive framework. Given that each task is performed and evaluated with a different dataset, analyzing the effect of the previous task on the next task with a single dataset throughout the information extraction process is impossible. This paper aims to propose a Korean information extraction initiative point and promote research in this field by presenting crowdsourcing data collected for four information extraction tasks from the same corpus and the training and evaluation results for each task of a state-of-the-art model. These machine learning data for Korean information extraction are the first of their kind, and there are plans to continuously increase the data volume. The test results will serve as an initiative result for each Korean information extraction task and are expected to serve as a comparison target for various studies on Korean information extraction using the data collected in this study.

pdf bib
Generating Diverse and Consistent QA pairs from Contexts with Information-Maximizing Hierarchical Conditional VAEs
Dong Bok Lee | Seanie Lee | Woo Tae Jeong | Donghwan Kim | Sung Ju Hwang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

One of the most crucial challenges in question answering (QA) is the scarcity of labeled data, since it is costly to obtain question-answer (QA) pairs for a target text domain with human annotation. An alternative approach to tackle the problem is to use automatically generated QA pairs from either the problem context or from large amount of unstructured texts (e.g. Wikipedia). In this work, we propose a hierarchical conditional variational autoencoder (HCVAE) for generating QA pairs given unstructured texts as contexts, while maximizing the mutual information between generated QA pairs to ensure their consistency. We validate our Information Maximizing Hierarchical Conditional Variational AutoEncoder (Info-HCVAE) on several benchmark datasets by evaluating the performance of the QA model (BERT-base) using only the generated QA pairs (QA-based evaluation) or by using both the generated and human-labeled pairs (semi-supervised learning) for training, against state-of-the-art baseline models. The results show that our model obtains impressive performance gains over all baselines on both tasks, using only a fraction of data for training.