Dongkwan Kim
2024
Perceptions to Beliefs: Exploring Precursory Inferences for Theory of Mind in Large Language Models
Chani Jung
|
Dongkwan Kim
|
Jiho Jin
|
Jiseon Kim
|
Yeon Seonwoo
|
Yejin Choi
|
Alice Oh
|
Hyunwoo Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
While humans naturally develop theory of mind (ToM), the capability to understand other people’s mental states and beliefs, state-of-the-art large language models (LLMs) underperform on simple ToM benchmarks. We posit that we can extend our understanding of LLMs’ ToM abilities by evaluating key human ToM precursors-perception inference and perception-to-belief inference-in LLMs. We introduce two datasets, Percept-ToMi and Percept-FANToM, to evaluate these precursory inferences for ToM in LLMs by annotating characters’ perceptions on ToMi and FANToM, respectively.Our evaluation of eight state-of-the-art LLMs reveals that the models generally perform well in perception inference while exhibiting limited capability in perception-to-belief inference (e.g., lack of inhibitory control).Based on these results, we present PercepToM, a novel ToM method leveraging LLMs’ strong perception inference capability while supplementing their limited perception-to-belief inference. Experimental results demonstrate that PercepToM significantly enhances LLM’s performance, especially in false belief scenarios.
2019
Additive Compositionality of Word Vectors
Yeon Seonwoo
|
Sungjoon Park
|
Dongkwan Kim
|
Alice Oh
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
Additive compositionality of word embedding models has been studied from empirical and theoretical perspectives. Existing research on justifying additive compositionality of existing word embedding models requires a rather strong assumption of uniform word distribution. In this paper, we relax that assumption and propose more realistic conditions for proving additive compositionality, and we develop a novel word and sub-word embedding model that satisfies additive compositionality under those conditions. We then empirically show our model’s improved semantic representation performance on word similarity and noisy sentence similarity.