As LLMs become increasingly prevalent, it is interesting to consider how “creative” these models can be. From cognitive science, creativity consists of at least two key characteristics: convergent thinking (purposefulness to achieve a given goal) and divergent thinking (adaptability to explore new environments or constraints) (CITATION). In this work, we introduce a framework for quantifying LLM creativity that incorporates the two design ingredients: (1) We introduce DENIAL PROMPTING which pushes LLMs to develop more creative solutions to a given problem by incrementally imposing new constraints on the previous solution, compelling LLMs to adopt new strategies. (2) We define NEOGAUGE, a metric that quantifies both convergent and divergent thinking in the generated creative responses by LLMs. We test the proposed framework on Codeforces problems, which serve as both a natural dataset for coding tasks and a collection of prior human solutions. We quantify NEOGAUGE for various proprietary and open-source models and find that even the most creative model, GPT-4, still falls short of demonstrating human-like creativity. We also experiment with advanced reasoning strategies (MCTS, self-correction, etc.) and observe no significant improvement in creativity. As a by-product of our analysis, we release NEOCODER dataset for reproducing our results on future models.
Recent language models enable new opportunities for structured reasoning with text, such as the construction of intuitive, proof-like textual entailment trees without relying on brittle formal logic. However, progress in this direction has been hampered by a long-standing lack of a clear protocol for determining what _valid decompositional entailment_ is. This absence causes noisy datasets and limited performance gains by modern neuro-symbolic entailment engines. To address these problems, we formulate a consistent and theoretically grounded approach to annotating decompositional entailment and evaluate its impact on LLM-based textual inference. We find that our new dataset, RDTE (Recognizing Decompositional Textual Entailment), has a substantially higher internal consistency than prior decompositional entailment datasets, suggesting that RDTE is a significant step forward in the long-standing problem of forming a clear protocol for discerning entailment. We also find that training an RDTE-oriented entailment classifier via knowledge distillation and employing it in an entailment tree reasoning engine significantly improves both accuracy and proof quality, illustrating the practical benefit of this advance for textual inference.
Large language models (LLMs) often struggle with complex logical reasoning due to logical inconsistencies and the inherent difficulty ofsuch reasoning. We use Lean, a theorem proving framework, to address these challenges. By formalizing logical reasoning problems intotheorems within Lean, we can solve them by proving or disproving the corresponding theorems. This method reduces the risk of logical inconsistencies with the help of Lean’s symbolic solver. It also enhances our ability to treat complex reasoning tasks using Lean’s extensive library of theorem proofs. Our method achieves state-of-the-art performance on the FOLIO dataset and achieves performance near this level on ProofWriter. Notably, these results were accomplished by fine-tuning on fewer than 100 in-domain samples for each dataset