Dongwoo Kim


2020

pdf bib
word2word: A Collection of Bilingual Lexicons for 3,564 Language Pairs
Yo Joong Choe | Kyubyong Park | Dongwoo Kim
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present word2word, a publicly available dataset and an open-source Python package for cross-lingual word translations extracted from sentence-level parallel corpora. Our dataset provides top-k word translations in 3,564 (directed) language pairs across 62 languages in OpenSubtitles2018 (Lison et al., 2018). To obtain this dataset, we use a count-based bilingual lexicon extraction model based on the observation that not only source and target words but also source words themselves can be highly correlated. We illustrate that the resulting bilingual lexicons have high coverage and attain competitive translation quality for several language pairs. We wrap our dataset and model in an easy-to-use Python library, which supports downloading and retrieving top-k word translations in any of the supported language pairs as well as computing top-k word translations for custom parallel corpora.

2017

pdf bib
Joint Modeling of Topics, Citations, and Topical Authority in Academic Corpora
Jooyeon Kim | Dongwoo Kim | Alice Oh
Transactions of the Association for Computational Linguistics, Volume 5

Much of scientific progress stems from previously published findings, but searching through the vast sea of scientific publications is difficult. We often rely on metrics of scholarly authority to find the prominent authors but these authority indices do not differentiate authority based on research topics. We present Latent Topical-Authority Indexing (LTAI) for jointly modeling the topics, citations, and topical authority in a corpus of academic papers. Compared to previous models, LTAI differs in two main aspects. First, it explicitly models the generative process of the citations, rather than treating the citations as given. Second, it models each author’s influence on citations of a paper based on the topics of the cited papers, as well as the citing papers. We fit LTAI into four academic corpora: CORA, Arxiv Physics, PNAS, and Citeseer. We compare the performance of LTAI against various baselines, starting with the latent Dirichlet allocation, to the more advanced models including author-link topic model and dynamic author citation topic model. The results show that LTAI achieves improved accuracy over other similar models when predicting words, citations and authors of publications.