Dongyan Zhao


2024

pdf bib
Efficient Temporal Extrapolation of Multimodal Large Language Models with Temporal Grounding Bridge
Yuxuan Wang | Yueqian Wang | Pengfei Wu | Jianxin Liang | Dongyan Zhao | Yang Liu | Zilong Zheng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Despite progress in multimodal large language models (MLLMs), the challenge of interpreting long-form videos in response to linguistic queries persists, largely due to the inefficiency in temporal grounding and limited pre-trained context window size. In this work, we introduce Temporal Grounding Bridge (TGB), a novel framework that bootstraps MLLMs with advanced temporal grounding capabilities and broadens their contextual scope. Our framework significantly enhances the temporal capabilities of current MLLMs through three key innovations: an efficient multi-span temporal grounding algorithm applied to low-dimension temporal features projected from flow; a multimodal length extrapolation training paradigm that utilizes low-dimension temporal features to extend the training context window size; and a bootstrapping framework that bridges our model with pluggable MLLMs without requiring annotation. We validate TGB across seven video benchmarks and demonstrate substantial performance improvements compared with prior MLLMs. Notably, our model, initially trained on sequences of four frames, effectively handles sequences up to 16 longer without sacrificing performance, highlighting its scalability and effectiveness in real-world applications. Our code is publicly available.

pdf bib
Mixture-of-Modules: Reinventing Transformers as Dynamic Assemblies of Modules
Zhuocheng Gong | Ang Lv | Jian Guan | Wei Wu | Huishuai Zhang | Minlie Huang | Dongyan Zhao | Rui Yan
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Is it always necessary to compute tokens from shallow to deep layers in Transformers? The continued success of vanilla Transformers and their variants suggests an undoubted “yes”. In this work, however, we attempt to break the depth-ordered convention by proposing a novel architecture dubbed mixture-of-modules (MoM), which is motivated by an intuition that any layer, regardless of its position, can be used to compute a token as long as it possesses the needed processing capabilities. The construction of MoM starts from a finite set of modules defined by multi-head attention and feed-forward networks, each distinguished by its unique parameterization. Two routers then iteratively select attention modules and feed-forward modules from the set to process a token. The selection dynamically expands the computation graph in the forward pass of the token, culminating in an assembly of modules. We show that MoM provides not only a unified framework for Transformers and their numerous variants but also a flexible and learnable approach for reducing redundancy in Transformer parameterization. We pre-train various MoMs using OpenWebText. Empirical results demonstrate that MoMs, of different sizes, consistently outperform vanilla transformers. More interestingly, after removing 50% of the multi-head attention modules and 25% of the feed-forward modules, an MoM model still holds comparable performance. Additionally, by properly adjusting the number of modules and compressing the model depth, one can have an MoM that achieves comparable performance to GPT-2 (774M) while saving 16% TFLOPs and 42% memory usage during forward computation.

pdf bib
Language Models can be Deductive Solvers
Jiazhan Feng | Ruochen Xu | Junheng Hao | Hiteshi Sharma | Yelong Shen | Dongyan Zhao | Weizhu Chen
Findings of the Association for Computational Linguistics: NAACL 2024

Logical reasoning is a fundamental aspect of human intelligence and a key component of tasks like problem-solving and decision-making. Recent advancements have enabled Large Language Models (LLMs) to potentially exhibit reasoning capabilities, but complex logical reasoning remains a challenge. The state-of-the-art, solver-augmented language models, use LLMs to parse natural language logical questions into symbolic representations first and then adopt external logical solvers to take in the symbolic representations and output the answers. Despite their impressive performance, any parsing errors will inevitably result in the failure of the execution of external logical solvers and no answer to the logical questions. In this paper, we introduce LoGiPT, a novel language model that directly internalizes and emulates the reasoning processes of logical solvers and avoids parsing errors by learning strict adherence to solver syntax and grammar. LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers. Experimental results on two public deductive reasoning benchmarks show that LoGiPT outperforms state-of-the-art solver-augmented LMs and few-shot prompting methods on competitive LLMs like GPT-4. This project is available in https://github.com/Cyril-JZ/LoGiPT.

pdf bib
PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task Completion
Yiduo Guo | Zekai Zhang | Yaobo Liang | Dongyan Zhao | Nan Duan
Findings of the Association for Computational Linguistics: ACL 2024

Recent evaluations of Large Language Models (LLMs) have centered around testing their zero-shot/few-shot capabilities for basic natural language tasks and their ability to translate instructions into tool APIs. However, the evaluation of LLMs utilizing complex tools to finish multi-turn, multi-modal instructions in a complex multi-modal environment has not been investigated. To address this gap, we introduce the PowerPoint Task Completion (PPTC) benchmark to assess LLMs’ ability to create and edit PPT files based on user instructions. It contains 279 multi-turn sessions covering diverse topics and hundreds of instructions involving multi-modal operations. We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence, thus it supports various LLM-generated API sequences. We measure 3 closed LLMs and 6 open-source LLMs. The results show that GPT-4 outperforms other LLMs with 75.1% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6% session accuracy. We find three main error causes in our benchmark: error accumulation in the multi-turn session, long PPT template processing, and multi-modality perception. These pose great challenges for future LLM and agent systems .

pdf bib
Large Language Models Can Learn Representation in Natural Language
Yiduo Guo | Yaobo Liang | Dongyan Zhao | Nan Duan
Findings of the Association for Computational Linguistics: ACL 2024

One major challenge for Large Language Models (LLMs) is completing complex tasks involving multiple entities, such as tool APIs. To tackle this, one approach is to retrieve relevant entities to enhance LLMs in task completion. A crucial issue here is obtaining accurate natural language representations for each entity to aid in retriever precision. In this paper, we propose the Natural Language Representation Optimization Problem, which aims to refine entity descriptions for improved retrieval and LLM utilization. We introduce the Learning to Represent with Natural Language method, which utilizes LLMs to optimize entity representations consisting of text patterns based on environmental feedback. We iteratively prompt LLMs to enhance or adjust patterns based on entity samples and evaluate their effectiveness through environmental feedback. Our method successfully learns human-understandable representations for classification tasks (e.g., instructions and documents) and API call tasks (e.g., APIbench and Virtual Home), significantly improving GPT-4’s task performance.

pdf bib
Graph-Structured Speculative Decoding
Zhuocheng Gong | Jiahao Liu | Ziyue Wang | Pengfei Wu | Jingang Wang | Xunliang Cai | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2024

Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models (LLMs) by employing a small language model to draft a hypothesis sequence, which is then validated by the LLM. The effectiveness of this approach heavily relies on the balance between performance and efficiency of the draft model. In our research, we focus on enhancing the proportion of draft tokens that are accepted to the final output by generating multiple hypotheses instead of just one. This allows the LLM more options to choose from and select the longest sequence that meets its standards. Our analysis reveals that hypotheses produced by the draft model share many common token sequences, suggesting a potential for optimizing computation. Leveraging this observation, we introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses. This structure enables us to efficiently predict and merge recurring token sequences, vastly reducing the computational demands of the draft model. We term this approach Graph-structured Speculative Decoding (GSD). We apply GSD across a range of LLMs, including a 70-billion parameter LLaMA-2 model, and observe a remarkable speedup of 1.70× to 1.94 ×, significantly surpassing standard speculative decoding.

pdf bib
SCALE: Synergized Collaboration of Asymmetric Language Translation Engines
Xin Cheng | Xun Wang | Tao Ge | Si-Qing Chen | Furu Wei | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2024

In this paper, we introduce SCALE, a collaborative framework that connects a compact Specialized Translation Model (STM) and a general-purpose Large Language Model (LLM) as one unified translation engine. By introducing translation from STM into the triplet in-context demonstrations, SCALE unlocks refinement and pivoting ability of LLM, thus 1) mitigating language bias of LLMs and parallel data bias of STMs, 2) enhancing LLM speciality without sacrificing generality, and 3) facilitating continual learning in a LLM-tuning-free way.Our comprehensive experiments show that SCALE significantly outperforms both LLMs (GPT-4, GPT-3.5) and supervised models (NLLB, M2M) in either high-resource or challenging low-resource settings. Moreover SCALE shows great scalability by only updating the lightweight STM and witness consistent system improvement, an averaged 4 BLEURT score across 4 languages without tuning LLM. Interestingly, SCALE could also effectively exploit the existing language bias of LLMs by using an English-centric STM as a pivot to conduct translation between any language pairs, outperforming GPT-4 by an average of 6 COMET points across eight translation directions. Furthermore we provide an in-depth analysis of SCALE’s robustness, translation characteristics, latency costs and inherent language bias, providing solid foundation for future studies exploring the potential synergy between LLMs and more specialized models.

pdf bib
Unlocking the Potential of Model Merging for Low-Resource Languages
Mingxu Tao | Chen Zhang | Quzhe Huang | Tianyao Ma | Songfang Huang | Dongyan Zhao | Yansong Feng
Findings of the Association for Computational Linguistics: EMNLP 2024

Adapting large language models (LLMs) to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT). However, this CT-then-SFT approach struggles with limited data in the context of low-resource languages, failing to balance language modeling and task-solving capabilities. We thus propose a new model merging solution as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training. We use model merging to develop task-solving LLMs for low-resource languages without SFT data in the target languages. Our experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data. Observing performance saturation in model merging with increasingly more training tokens, we further analyze the merging process and introduce a slack variable to the model merging algorithm to mitigate the loss of important parameters, thereby enhancing model performance. We hope that model merging can benefit more human languages suffering from data scarcity with its higher data efficiency.

pdf bib
Learning to Plan by Updating Natural Language
Yiduo Guo | Yaobo Liang | Chenfei Wu | Wenshan Wu | Dongyan Zhao | Nan Duan
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) have shown remarkable performance in various basic natural language tasks. For completing the complex task, we still need a plan for the task to guide LLMs to generate the specific solutions step by step. LLMs can directly generate task plans, but these plans may still contain factual errors or are incomplete. A high-quality task plan contains correct step-by-step solutions for solving all situations and behavioral instructions for avoiding mistakes. To obtain it, we propose the Learning to Plan method, which involves two phases: (1) In the first learning task plan phase, it iteratively updates the task plan with new step-by-step solutions and behavioral instructions, which are obtained by prompting LLMs to derive from training error feedback. (2) In the subsequent test phase, the LLM uses the learned task plan to guide the inference of LLM on the test set. We demonstrate the effectiveness of our method on the five different reasoning type tasks (8 datasets). Further, our analysis experiment shows that the task plan learned by one LLM can directly guide another LLM to improve its performance, which reveals a new transfer learning paradigm.

pdf bib
PPTC-R benchmark: Towards Evaluating the Robustness of Large Language Models for PowerPoint Task Completion
Zekai Zhang | Yiduo Guo | Yaobo Liang | Dongyan Zhao | Nan Duan
Findings of the Association for Computational Linguistics: EMNLP 2024

The growing dependence on Large Language Models (LLMs) for finishing user instructions necessitates a comprehensive understanding of their robustness to complex task completion in real-world situations. To address this critical need, we propose the PowerPoint Task Completion-Robustness (PPTC-R) benchmark to measure LLMs’ robustness to the user PPT task instruction and software version (Powerpoint). Specifically, we construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels. To assess the robustness of Language Models to software versions, we vary the number of provided APIs to simulate both the newest version and earlier version settings. Subsequently, we test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates these robustness settings, aiming to evaluate how deviations impact LLMs’ API calls for task completion. We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark, particularly in the version update and the multilingual settings. However, we find that all LLMs lose their robustness when confronted with multiple challenges (e.g., multi-turn) simultaneously, leading to significant performance drops. We further analyze the robustness behavior and error reasons of LLMs in our benchmark, which provide valuable insights for researchers to understand the LLM’s robustness in task completion and develop more robust LLMs and agents.

pdf bib
Synergistic Interplay between Search and Large Language Models for Information Retrieval
Jiazhan Feng | Chongyang Tao | Xiubo Geng | Tao Shen | Can Xu | Guodong Long | Dongyan Zhao | Daxin Jiang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Information retrieval (IR) plays a crucial role in locating relevant resources from vast amounts of data, and its applications have evolved from traditional knowledge bases to modern retrieval models (RMs). The emergence of large language models (LLMs) has further revolutionized the IR field by enabling users to interact with search systems in natural languages. In this paper, we explore the advantages and disadvantages of LLMs and RMs, highlighting their respective strengths in understanding user-issued queries and retrieving up-to-date information. To leverage the benefits of both paradigms while circumventing their limitations, we propose **InteR**, a novel framework that facilitates information refinement through synergy between RMs and LLMs. InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections and enables LLMs to enhance prompt formulation using retrieved documents. This iterative refinement process augments the inputs of RMs and LLMs, leading to more accurate retrieval. Experiments on large-scale retrieval benchmarks involving web search and low-resource retrieval tasks show that InteR achieves overall superior **zero-shot** retrieval performance compared to state-of-the-art methods, even those using relevance judgment. Source code is available at https://github.com/Cyril-JZ/InteR.

pdf bib
Bi-Directional Multi-Granularity Generation Framework for Knowledge Graph-to-Text with Large Language Model
Haowei Du | Chen Li | Dinghao Zhang | Dongyan Zhao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

The knowledge graph-to-text (KG-to-text) generation task aims to synthesize coherent and engaging sentences that accurately convey the complex information derived from an input knowledge graph. Existing methods generate the whole target text based on all KG triples at once and may incorporate incorrect KG triples for each sentence. To this end, we propose the bi-directional multi-granularity generation framework. Instead of generating the whole text at a time, we construct the sentence level generation based on the corresponding triples and generate the graph-level text as a result. Moreover, we design a backward relation extraction task to enhance the correctness of relational information. Our method achieves the new state-of-the-art in benchmark dataset WebNLG and further analysis shows the efficiency of different modules.

pdf bib
Multilingual Generation in Abstractive Summarization: A Comparative Study
Jinpeng Li | Jiaze Chen | Huadong Chen | Dongyan Zhao | Rui Yan
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The emergence of pre-trained models marks a significant juncture for the multilingual generation, offering unprecedented capabilities to comprehend and produce text across multiple languages. These models display commendable efficiency in high-resource languages. However, their performance notably falters in low-resource languages due to the extensive linguistic diversity encountered. Moreover, the existing works lack thorough analysis impairs the discovery of effective multilingual strategies, further complicating the advancement of current multilingual generation systems. This paper aims to appraise the efficacy of multilingual generation tasks, with a focus on summarization, through three resource availability scenarios: high-resource, low-resource, and zero-shot. We classify multilingual generation methodologies into three foundational categories based on their underlying modeling principles: Fine-tuning, Parameter-isolation, and Constraint-based approaches. Following this classification, we conduct a comprehensive comparative study of these methodologies across different resource contexts using two datasets that span six languages. This analysis provides insights into the unique advantages and limitations of each method. In addition, we introduce an innovative yet simple automatic metric LANGM designed to mitigate the prevalent problem of spurious correlations associated with language mixing. LANGM accurately measures the degree of code-mixing at the language level. Finally, we highlight several challenges and suggest potential avenues for future inquiry, aiming to spur further advancements within the field of multilingual text generation.

pdf bib
Probing Multimodal Large Language Models for Global and Local Semantic Representations
Mingxu Tao | Quzhe Huang | Kun Xu | Liwei Chen | Yansong Feng | Dongyan Zhao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The advancement of Multimodal Large Language Models (MLLMs) has greatly accelerated the development of applications in understanding integrated texts and images. Recent works leverage image-caption datasets to train MLLMs, achieving state-of-the-art performance on image-to-text tasks. However, there are few studies exploring which layers of MLLMs make the most effort to the global image information, which plays vital roles in multimodal comprehension and generation. In this study, we find that the intermediate layers of models can encode more global semantic information, whose representation vectors perform better on visual-language entailment tasks, rather than the topmost layers. We further probe models regarding local semantic representations through object recognition tasks. We find that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information. Our code and data are released via https://github.com/kobayashikanna01/probing_MLLM_rep.

2023

pdf bib
FAA: Fine-grained Attention Alignment for Cascade Document Ranking
Zhen Li | Chongyang Tao | Jiazhan Feng | Tao Shen | Dongyan Zhao | Xiubo Geng | Daxin Jiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Document ranking aims at sorting a collection of documents with their relevance to a query. Contemporary methods explore more efficient transformers or divide long documents into passages to handle the long input. However, intensive query-irrelevant content may lead to harmful distraction and high query latency. Some recent works further propose cascade document ranking models that extract relevant passages with an efficient selector before ranking, however, their selection and ranking modules are almost independently optimized and deployed, leading to selecting error reinforcement and sub-optimal performance. In fact, the document ranker can provide fine-grained supervision to make the selector more generalizable and compatible, and the selector built upon a different structure can offer a distinct perspective to assist in document ranking. Inspired by this, we propose a fine-grained attention alignment approach to jointly optimize a cascade document ranking model. Specifically, we utilize the attention activations over the passages from the ranker as fine-grained attention feedback to optimize the selector. Meanwhile, we fuse the relevance scores from the passage selector into the ranker to assist in calculating the cooperative matching representation. Experiments on MS MARCO and TREC DL demonstrate the effectiveness of our method.

pdf bib
From the One, Judge of the Whole: Typed Entailment Graph Construction with Predicate Generation
Zhibin Chen | Yansong Feng | Dongyan Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Entailment Graphs (EGs) have been constructed based on extracted corpora as a strong and explainable form to indicate context-independent entailment relation in natural languages. However, EGs built by previous methods often suffer from the severe sparsity issues, due to limited corpora available and the long-tail phenomenon of predicate distributions. In this paper, we propose a multi-stage method, Typed Predicate-Entailment Graph Generator (TP-EGG), to tackle this problem. Given several seed predicates, TP-EGG builds the graphs by generating new predicates and detecting entailment relations among them. The generative nature of TP-EGG helps us leverage the recent advances from large pretrained language models (PLMs), while avoiding the reliance on carefully prepared corpora. Experiments on benchmark datasets show that TP-EGG can generate high-quality and scale-controllable entailment graphs, achieving significant in-domain improvement over state-of-the-art EGs and boosting the performance of down-stream inference tasks.

pdf bib
Analyzing and Reducing the Performance Gap in Cross-Lingual Transfer with Fine-tuning Slow and Fast
Yiduo Guo | Yaobo Liang | Dongyan Zhao | Bing Liu | Nan Duan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing research has shown that a multilingual pre-trained language model fine-tuned with one (source) language also performs well on downstream tasks for non-source languages, even though no fine-tuning is done on these languages. However, there is a clear gap between the performance of the source language and that of the non-source languages. This paper analyzes the fine-tuning process, discovers when the performance gap changes and identifies which network weights affect the overall performance most. Additionally, the paper seeks to answer to what extent the gap can be reduced by reducing forgetting. Based on the analysis results, a method named Fine-tuning slow and fast with four training policies is proposed to address these issues. Experimental results show the proposed method outperforms baselines by a clear margin.

pdf bib
VSTAR: A Video-grounded Dialogue Dataset for Situated Semantic Understanding with Scene and Topic Transitions
Yuxuan Wang | Zilong Zheng | Xueliang Zhao | Jinpeng Li | Yueqian Wang | Dongyan Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Video-grounded dialogue understanding is a challenging problem that requires machine to perceive, parse and reason over situated semantics extracted from weakly aligned video and dialogues. Most existing benchmarks treat both modalities the same as a frame-independent visual understanding task, while neglecting the intrinsic attributes in multimodal dialogues, such as scene and topic transitions. In this paper, we present Video-grounded Scene&Topic AwaRe dialogue (VSTAR) dataset, a large scale video-grounded dialogue understanding dataset based on 395 TV series. Based on VSTAR, we propose two benchmarks for video-grounded dialogue understanding: scene segmentation and topic segmentation, and one benchmark for video-grounded dialogue generation. Comprehensive experiments are performed on these benchmarks to demonstrate the importance of multimodal information and segments in video-grounded dialogue understanding and generation.

pdf bib
MMDialog: A Large-scale Multi-turn Dialogue Dataset Towards Multi-modal Open-domain Conversation
Jiazhan Feng | Qingfeng Sun | Can Xu | Pu Zhao | Yaming Yang | Chongyang Tao | Dongyan Zhao | Qingwei Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Responding with multi-modal content has been recognized as an essential capability for an intelligent conversational agent. In this paper, we introduce the MMDialog dataset to facilitate multi-modal conversation better. MMDialog is composed of a curated set of 1.08 million real-world dialogues with 1.53 million unique images across 4,184 topics. MMDialog has two main and unique advantages. First, it is the largest multi-modal conversation dataset by the number of dialogues by 88x. Second, it contains massive topics to generalize the open domain. To build an engaging dialogue system with this dataset, we propose and normalize two response prediction tasks based on retrieval and generative scenarios. In addition, we build two baselines for the above tasks with state-of-the-art techniques and report their experimental performance. We also propose a novel evaluation metric MM-Relevance to measure the multi-modal responses. Our dataset is available in https://github.com/victorsungo/MMDialog.

pdf bib
More than Classification: A Unified Framework for Event Temporal Relation Extraction
Quzhe Huang | Yutong Hu | Shengqi Zhu | Yansong Feng | Chang Liu | Dongyan Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Event temporal relation extraction (ETRE) is usually formulated as a multi-label classification task, where each type of relation is simply treated as a one-hot label. This formulation ignores the meaning of relations and wipes out their intrinsic dependency. After examining the relation definitions in various ETRE tasks, we observe that all relations can be interpreted using the start and end time points of events. For example, relation Includes could be interpreted as event 1 starting no later than event 2 and ending no earlier than event 2. In this paper, we propose a unified event temporal relation extraction framework, which transforms temporal relations into logical expressions of time points and completes the ETRE by predicting the relations between certain time point pairs. Experiments on TB-Dense and MATRES show significant improvements over a strong baseline and outperform the state-of-the-art model by 0.3% on both datasets. By representing all relations in a unified framework, we can leverage the relations with sufficient data to assist the learning of other relations, thus achieving stable improvement in low-data scenarios. When the relation definitions are changed, our method can quickly adapt to the new ones by simply modifying the logic expressions that map time points to new event relations. The code is released at https://github.com/AndrewZhe/A-Unified-Framework-for-ETRE

pdf bib
RankCSE: Unsupervised Sentence Representations Learning via Learning to Rank
Jiduan Liu | Jiahao Liu | Qifan Wang | Jingang Wang | Wei Wu | Yunsen Xian | Dongyan Zhao | Kai Chen | Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Unsupervised sentence representation learning is one of the fundamental problems in natural language processing with various downstream applications. Recently, contrastive learning has been widely adopted which derives high-quality sentence representations by pulling similar semantics closer and pushing dissimilar ones away. However, these methods fail to capture the fine-grained ranking information among the sentences, where each sentence is only treated as either positive or negative. In many real-world scenarios, one needs to distinguish and rank the sentences based on their similarities to a query sentence, e.g., very relevant, moderate relevant, less relevant, irrelevant, etc. In this paper, we propose a novel approach, RankCSE, for unsupervised sentence representation learning, which incorporates ranking consistency and ranking distillation with contrastive learning into a unified framework. In particular, we learn semantically discriminative sentence representations by simultaneously ensuring ranking consistency between two representations with different dropout masks, and distilling listwise ranking knowledge from the teacher. An extensive set of experiments are conducted on both semantic textual similarity (STS) and transfer (TR) tasks. Experimental results demonstrate the superior performance of our approach over several state-of-the-art baselines.

pdf bib
Dialogue Summarization with Static-Dynamic Structure Fusion Graph
Shen Gao | Xin Cheng | Mingzhe Li | Xiuying Chen | Jinpeng Li | Dongyan Zhao | Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dialogue, the most fundamental and specially privileged arena of language, gains increasing ubiquity across the Web in recent years. Quickly going through the long dialogue context and capturing salient information scattered over the whole dialogue session benefit users in many real-world Web applications such as email thread summarization and meeting minutes draft. Dialogue summarization is a challenging task in that dialogue has dynamic interaction nature and presumably inconsistent information flow among various speakers. Many researchers address this task by modeling dialogue with pre-computed static graph structure using external linguistic toolkits. However, such methods heavily depend on the reliability of external tools and the static graph construction is disjoint with the graph representation learning phase, which makes the graph can’t be dynamically adapted for the downstream summarization task. In this paper, we propose a Static-Dynamic graph-based Dialogue Summarization model (SDDS), which fuses prior knowledge from human expertise and adaptively learns the graph structure in an end-to-end learning fashion. To verify the effectiveness of SDDS, we conduct experiments on three benchmark datasets (SAMSum, MediaSum, and DialogSum) and the results verify the superiority of SDDS.

pdf bib
Class-Incremental Learning based on Label Generation
Yijia Shao | Yiduo Guo | Dongyan Zhao | Bing Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Despite the great success of pre-trained language models, it is still a challenge to use these models for continual learning, especially for the class-incremental learning (CIL) setting due to catastrophic forgetting (CF). This paper reports our finding that if we formulate CIL as a continual label generation problem, CF is drastically reduced and the generalizable representations of pre-trained models can be better retained. We thus propose a new CIL method (VAG) that also leverages the sparsity of vocabulary to focus the generation and creates pseudo-replay samples by using label semantics. Experimental results show that VAG outperforms baselines by a large margin.

pdf bib
An Intra-Class Relation Guided Approach for Code Comment Generation
Zhenni Wang | Xiaohan Yu | Yansong Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: EACL 2023

Code comments are critical for maintaining and comprehending software programs, but they are often missing, mismatched, or outdated in practice. Code comment generation task aims to automatically produce descriptive comments for code snippets. Recently, methods based on the neural encoder-decoder architecture have achieved impressive performance. These methods assume that all the information required to generate comments is encoded in the target function itself, yet in most realistic situations, it is hard to understand a function in isolation from the surrounding context. Furthermore, the global context may contain redundant information that should not be introduced. To address the above issues, we present a novel graph-based learning framework to capture various relations among functions in a class file. Our approach is based on a common real-world scenario in which only a few functions in the source file have human-written comments. Guided by intra-class function relations, our model incorporates contextual information extracted from both the source code and available comments to generate missing comments. We conduct experiments on a Java dataset collected from real-world projects. Experimental results show that the proposed method outperforms competitive baseline models on all automatic and human evaluation metrics.

pdf bib
Cross-Lingual Question Answering over Knowledge Base as Reading Comprehension
Chen Zhang | Yuxuan Lai | Yansong Feng | Xingyu Shen | Haowei Du | Dongyan Zhao
Findings of the Association for Computational Linguistics: EACL 2023

Although many large-scale knowledge bases (KBs) claim to contain multilingual information, their support for many non-English languages is often incomplete. This incompleteness gives birth to the task of cross-lingual question answering over knowledge base (xKBQA), which aims to answer questions in languages different from that of the provided KB. One of the major challenges facing xKBQA is the high cost of data annotation, leading to limited resources available for further exploration. Another challenge is mapping KB schemas and natural language expressions in the questions under cross-lingual settings. In this paper, we propose a novel approach for xKBQA in a reading comprehension paradigm. We convert KB subgraphs into passages to narrow the gap between KB schemas and questions, which enables our model to benefit from recent advances in multilingual pre-trained language models (MPLMs) and cross-lingual machine reading comprehension (xMRC). Specifically, we use MPLMs, with considerable knowledge of cross-lingual mappings, for cross-lingual reading comprehension. Existing high-quality xMRC datasets can be further utilized to finetune our model, greatly alleviating the data scarcity issue in xKBQA. Extensive experiments on two xKBQA datasets in 12 languages show that our approach outperforms various baselines and achieves strong few-shot and zero-shot performance. Our dataset and code are released for further research.

pdf bib
Align-then-Enhance: Multilingual Entailment Graph Enhancement with Soft Predicate Alignment
Yuting Wu | Yutong Hu | Yansong Feng | Tianyi Li | Mark Steedman | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Entailment graphs (EGs) with predicates as nodes and entailment relations as edges are typically incomplete, while EGs in different languages are often complementary to each other. In this paper, we propose a new task, multilingual entailment graph enhancement, which aims to utilize the entailment information from one EG to enhance another EG in a different language. The ultimate goal is to obtain an enhanced EG containing richer and more accurate entailment information. We present an align-then-enhance framework (ATE) to achieve accurate multilingual entailment graph enhancement, which first exploits a cross-graph guided interaction mechanism to automatically discover potential equivalent predicates between different EGs and then constructs more accurate enhanced entailment graphs based on soft predicate alignments. Extensive experiments show that ATE achieves better and more robust predicate alignment results between different EGs, and the enhanced entailment graphs generated by ATE outperform the original graphs for entailment detection.

pdf bib
Rethinking Dictionaries and Glyphs for Chinese Language Pre-training
Yuxuan Wang | Jack Wang | Dongyan Zhao | Zilong Zheng
Findings of the Association for Computational Linguistics: ACL 2023

We introduce CDBert, a new learning paradigm that enhances the semantics understanding ability of the Chinese PLMs with dictionary knowledge and structure of Chinese characters. We name the two core modules of CDBert as Shuowen and Jiezi, where Shuowen refers to the process of retrieving the most appropriate meaning from Chinese dictionaries and Jiezi refers to the process of enhancing characters’ glyph representations with structure understanding. To facilitate dictionary understanding, we propose three pre-training tasks, i.e.„ Masked Entry Modeling, Contrastive Learning for Synonym and Antonym, and Example Learning. We evaluate our method on both modern Chinese understanding benchmark CLUE and ancient Chinese benchmark CCLUE. Moreover, we propose a new polysemy discrimination task PolyMRC based on the collected dictionary of ancient Chinese. Our paradigm demonstrates consistent improvements on previous Chinese PLMs across all tasks. Moreover, our approach yields significant boosting on few-shot setting of ancient Chinese understanding.

pdf bib
How Many Answers Should I Give? An Empirical Study of Multi-Answer Reading Comprehension
Chen Zhang | Jiuheng Lin | Xiao Liu | Yuxuan Lai | Yansong Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

The multi-answer phenomenon, where a question may have multiple answers scattered in the document, can be well handled by humans but is challenging enough for machine reading comprehension (MRC) systems. Despite recent progress in multi-answer MRC, there lacks a systematic analysis of how this phenomenon arises and how to better address it. In this work, we design a taxonomy to categorize commonly-seen multi-answer MRC instances, with which we inspect three multi-answer datasets and analyze where the multi-answer challenge comes from. We further analyze how well different paradigms of current multi-answer MRC models deal with different types of multi-answer instances. We find that some paradigms capture well the key information in the questions while others better model the relation between questions and contexts. We thus explore strategies to make the best of the strengths of different paradigms. Experiments show that generation models can be a promising platform to incorporate different paradigms. Our annotations and code are released for further research.

pdf bib
Structure-Discourse Hierarchical Graph for Conditional Question Answering on Long Documents
Haowei Du | Yansong Feng | Chen Li | Yang Li | Yunshi Lan | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Conditional question answering on long documents aims to find probable answers and identify conditions that need to be satisfied to make the answers correct over long documents. Existing approaches solve this task by segmenting long documents into multiple sections, and attending information at global and local tokens to predict the answers and corresponding conditions. However, the natural structure of the document and discourse relations between sentences in each document section are ignored, which are crucial for condition retrieving across sections, as well as logical interaction over the question and conditions. To address this issue, this paper constructs a Structure-Discourse Hierarchical Graph (SDHG) and conducts bottom-up information propagation. Firstly we build the sentence-level discourse graphs for each section and encode the discourse relations by graph attention. Secondly, we construct a section-level structure graph based on natural structures, and conduct interactions over the question and contexts. Finally different levels of representations are integrated into jointly answer and condition decoding. The experiments on the benchmark ConditionalQA shows our approach gains over the prior state-of-the-art, by 3.0 EM score and 2.4 F1 score on answer measuring, as well as 2.2 EM score and 1.9 F1 score on jointly answer and condition measuring.

pdf bib
Attend, Select and Eliminate: Accelerating Multi-turn Response Selection with Dual-attention-based Content Elimination
Jianxin Liang | Chang Liu | Chongyang Tao | Jiazhan Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Although the incorporation of pre-trained language models (PLMs) significantly pushes the research frontier of multi-turn response selection, it brings a new issue of heavy computation costs. To alleviate this problem and make the PLM-based response selection model both effective and efficient, we propose an inference framework together with a post-training strategy that builds upon any pre-trained transformer-based response selection models to accelerate inference by progressively selecting and eliminating unimportant content under the guidance of context-response dual-attention. Specifically, at each transformer layer, we first identify the importance of each word based on context-to-response and response-to-context attention, then select a number of unimportant words to be eliminated following a retention configuration derived from evolutionary search while passing the rest of the representations into deeper layers. To mitigate the training-inference gap posed by content elimination, we introduce a post-training strategy where we use knowledge distillation to force the model with progressively eliminated content to mimic the predictions of the original model with no content elimination. Experiments on three benchmarks indicate that our method can effectively speeds-up SOTA models without much performance degradation and shows a better trade-off between speed and performance than previous methods.

pdf bib
Leveraging Denoised Abstract Meaning Representation for Grammatical Error Correction
Hejing Cao | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Grammatical Error Correction (GEC) is the task of correcting errorful sentences into grammatically correct, semantically consistent, and coherent sentences. Popular GEC models either use large-scale synthetic corpora or use a large number of human-designed rules. The former is costly to train, while the latter requires quite a lot of human expertise. In recent years, AMR, a semantic representation framework, has been widely used by many natural language tasks due to its completeness and flexibility. A non-negligible concern is that AMRs of grammatically incorrect sentences may not be exactly reliable. In this paper, we propose the AMR-GEC, a seq-to-seq model that incorporates denoised AMR as additional knowledge. Specifically, We design a semantic aggregated GEC model and explore denoising methods to get AMRs more reliable. Experiments on the BEA-2019 shared task and the CoNLL-2014 shared task have shown that AMR-GEC performs comparably to a set of strong baselines with a large number of synthetic data. Compared with the T5 model with synthetic data, AMR-GEC can reduce the training time by 32% while inference time is comparable. To the best of our knowledge, we are the first to incorporate AMR for grammatical error correction.

pdf bib
PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language Models
Zhuocheng Gong | Jiahao Liu | Qifan Wang | Yang Yang | Jingang Wang | Wei Wu | Yunsen Xian | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2023

While transformer-based pre-trained language models (PLMs) have dominated a number of NLP applications, these models are heavy to deploy and expensive to use. Therefore, effectively compressing large-scale PLMs becomes an increasingly important problem. Quantization, which represents high-precision tensors with low-bit fix-point format, is a viable solution. However, most existing quantization methods are task-specific, requiring customized training and quantization with a large number of trainable parameters on each individual task. Inspired by the observation that the over-parameterization nature of PLMs makes it possible to freeze most of the parameters during the fine-tuning stage, in this work, we propose a novel “quantize before fine-tuning” framework, PreQuant, that differs from both quantization-aware training and post-training quantization. {pasted macro ‘OUR’} is compatible with various quantization strategies, with outlier-aware parameter-efficient fine-tuning incorporated to correct the induced quantization error. We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5. We also provide an empirical investigation into the workflow of PreQuant, which sheds light on its efficacy.

pdf bib
The Magic of IF: Investigating Causal Reasoning Abilities in Large Language Models of Code
Xiao Liu | Da Yin | Chen Zhang | Yansong Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Causal reasoning, the ability to identify cause-and-effect relationship, is crucial in human thinking. Although large language models (LLMs) succeed in many NLP tasks, it is still challenging for them to conduct complex causal reasoning like abductive reasoning and counterfactual reasoning. Given the fact that programming code may express causal relations more often and explicitly with conditional statements like “if“, we want to explore whether Code-LLMs acquire better causal reasoning abilities. Our experiments show that compared to text-only LLMs, Code-LLMs with code prompts are better causal reasoners. We further intervene on the prompts from different aspects, and discover that the key point is the programming structure. Code and data are available at https://github.com/xxxiaol/magic-if.

pdf bib
Smart Word Suggestions for Writing Assistance
Chenshuo Wang | Shaoguang Mao | Tao Ge | Wenshan Wu | Xun Wang | Yan Xia | Jonathan Tien | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Enhancing word usage is a desired feature for writing assistance. To further advance research in this area, this paper introduces “Smart Word Suggestions” (SWS) task and benchmark. Unlike other works, SWS emphasizes end-to-end evaluation and presents a more realistic writing assistance scenario. This task involves identifying words or phrases that require improvement and providing substitution suggestions. The benchmark includes human-labeled data for testing, a large distantly supervised dataset for training, and the framework for evaluation. The test data includes 1,000 sentences written by English learners, accompanied by over 16,000 substitution suggestions annotated by 10 native speakers. The training dataset comprises over 3.7 million sentences and 12.7 million suggestions generated through rules. Our experiments with seven baselines demonstrate that SWS is a challenging task. Based on experimental analysis, we suggest potential directions for future research on SWS. The dataset and related codes will be available for research purposes.

pdf bib
Decouple knowledge from paramters for plug-and-play language modeling
Xin Cheng | Yankai Lin | Xiuying Chen | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2023

Pre-trained language models (PLM) have made impressive results in a wide range of NLP tasks and it has been revealed that one of the key factors to their success is the parameters of these models implicitly learn various types of knowledge in the pre-training corpus. However, encoding knowledge implicitly in the model parameters has two fundamental drawbacks. First, the knowledge is neither editable nor scalable once the model is trained, which is especially problematic in that knowledge is consistently evolving. Second, it lacks interpretability and prevents us from understanding what kind of knowledge PLM needs to solve a certain task. In this paper, we introduce {pasted macro ‘MODEL’}, a pre-training model with differentiable plug-in memory (DPM). The key intuition behind is to decouple the knowledge storage from model parameters with an editable and scalable key-value memory and leverage knowledge in an explainable manner by knowledge retrieval in the {pasted macro ‘MEMORY’}. We conduct extensive experiments under various settings to justify this design choice. In domain adaptation setting, {pasted macro ‘MODEL’} could be easily adapted to different domains with pluggable in-domain memory—obtaining 3.95 F1 improvements across four domains, without any in-domain training. {pasted macro ‘MODEL’} could also keep absorbing new knowledge after pre-training is done by knowledge updating operation in the {pasted macro ‘MEMORY’} without re-training. Finally, we show that by incorporating training samples into {pasted macro ‘MEMORY’} with knowledge prompting, {pasted macro ‘MODEL’} could further be improved by the instruction of in-task knowledge.

pdf bib
Multi-Granularity Information Interaction Framework for Incomplete Utterance Rewriting
Haowei Du | Dinghao Zhang | Chen Li | Yang Li | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023

Recent approaches in Incomplete Utterance Rewriting (IUR) fail to capture the source of important words, which is crucial to edit the incomplete utterance, and introduce words from irrelevant utterances. We propose a novel and effective multi-task information interaction framework including context selection, edit matrix construction, and relevance merging to capture the multi-granularity of semantic information. Benefiting from fetching the relevant utterance and figuring out the important words, our approach outperforms existing state-of-the-art models on two benchmark datasets Restoration-200K and CANAND in this field.

pdf bib
Length-Adaptive Distillation: Customizing Small Language Model for Dynamic Token Pruning
Chang Liu | Chongyang Tao | Jianxin Liang | Jiazhan Feng | Tao Shen | Quzhe Huang | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023

Pre-trained language models greatly improve the performance of various tasks but at a cost of high computation overhead. To facilitate practical applications, there are mainly two lines of research to accelerate model inference: model compression and dynamic computation (e.g., dynamic token pruning). Existing works either adopt these methods individually or simply apply dynamic computation approaches upon a compressed small language model. We argue that they are sub-optimal since the two approaches are separately designed so the compressed model may not be tailored for dynamic computation. To tackle this problem and make compressed small language models faster, we propose Length-Adaptive Distillation, a two-stage knowledge distillation framework that aims to produce a customized small language model for dynamic token pruning. In the general distillation stage, we enforce the student to mimic and reconstruct the teacher’s output based on the dynamically pruned representations. Then in the task-specific distillation stage, the student is further accustomed to token pruning while absorbing the task-specific knowledge. Experimental results on GLUE benchmark demonstrate that our method can make the small language model more customized for dynamic token pruning and achieve better speed-performance trade-off.

pdf bib
From Simple to Complex: A Progressive Framework for Document-level Informative Argument Extraction
Quzhe Huang | Yanxi Zhang | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023

Document-level Event Argument Extraction (EAE) requires the model to extract arguments of multiple events from a single document. Considering the underlying dependencies between these events, recent efforts leverage the idea of “memory”, where the results of already predicted events are cached and can be retrieved to help the prediction of upcoming events. These methods extract events according to their appearance order in the document, however, the event that appears in the first sentence does not mean that it is the easiest to extract. Existing methods might introduce noise to the extraction of upcoming events if they rely on an incorrect prediction of previous events. In order to provide more reliable memory, we propose a simple-to-complex progressive framework for document-level EAE. Specifically, we first calculate the difficulty of each event and then, we conduct the extraction following a simple-to-complex order. In this way, the memory will store the most certain results, and the model could use these reliable sources to help the prediction of more difficult events. Experiments on WikiEvents show that our model outperforms SOTA by 1.4% in F1, indicating the proposed simple-to-complex framework is useful in the EAE task.

pdf bib
Stylized Dialogue Generation with Feature-Guided Knowledge Augmentation
Jinpeng Li | Zekai Zhang | Xiuying Chen | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: EMNLP 2023

Stylized dialogue generation systems aim to produce coherent and context-aware dialogues while effectively emulating the desired style. Generating stylized dialogue is valuable yet challenging due to the scarce parallel data. Existing methods often synthesize pseudo data through back translation, yet suffer from noisy and context-agnostic style signals caused by insufficient guidance on target style features. To address this, we propose the knowledge-augmented stylized dialogue generation model, which includes a feature-guided style knowledge selection module that utilizes context and response features. Specifically, we retrieve dialogue-related style sentences from style corpus to explicitly provide clear style signals. We design a feature-guided selection module with response-related contrastive learning and style responsiveness Kullback-Leibler losses to enhance generation at both semantic and stylized levels. Our approach demonstrates satisfactory performance on two public stylized dialogue benchmarks in both automatic and human evaluations.

pdf bib
Retrieval-based Knowledge Transfer: An Effective Approach for Extreme Large Language Model Compression
Jiduan Liu | Jiahao Liu | Qifan Wang | Jingang Wang | Xunliang Cai | Dongyan Zhao | Ran Wang | Rui Yan
Findings of the Association for Computational Linguistics: EMNLP 2023

Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks. However, the massive size of these models poses huge challenges for their deployment in real-world applications. While numerous model compression techniques have been proposed, most of them are not well-suited for achieving extreme model compression when there is a significant gap in model scale. In this paper, we introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT), which effectively transfers the knowledge of LLMs to extremely small-scale models (e.g., 1%). In particular, our approach extracts knowledge from LLMs to construct a knowledge store, from which the small-scale model can retrieve relevant information and leverage it for effective inference. To improve the quality of the model, soft prompt tuning and Proximal Policy Optimization (PPO) reinforcement learning techniques are employed. Extensive experiments are conducted on low-resource tasks from SuperGLUE and GLUE benchmarks. The results demonstrate that the proposed approach significantly enhances the performance of small-scale models by leveraging the knowledge from LLMs.

pdf bib
Relation-Aware Question Answering for Heterogeneous Knowledge Graphs
Haowei Du | Quzhe Huang | Chen Li | Chen Zhang | Yang Li | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023

Multi-hop Knowledge Base Question Answering(KBQA) aims to find the answer entity in a knowledge graph (KG), which requires multiple steps of reasoning. Existing retrieval-based approaches solve this task by concentrating on the specific relation at different hops and predicting the intermediate entity within the reasoning path. However, these models fail to utilize information from head-tail entities and the semantic connection between relations to enhance the current relation representation, which undermines the information capturing of relations in KGs. To address this issue, we construct a dual relation graph where each node denotes a relation in the original KG (primal entity graph) and edges are constructed between relations sharing same head or tail entities. Then we iteratively do primal entity graph reasoning, dual relation graph information propagation, and interaction between these two graphs. In this way, the interaction between entity and relation is enhanced, and we derive better entity and relation representations. Experiments on two public datasets, WebQSP and CWQ, show that our approach achieves a significant performance gain over the prior state-of-the-art.

pdf bib
Learning Dynamic Representations for Discourse Dependency Parsing
Tianyi Liu | Yansong Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2023

Transition systems have been widely used for the discourse dependency parsing task. Existing works often characterize transition states by examining a certain number of elementary discourse units (EDUs), while neglecting the arcs obtained from the transition history. In this paper, we propose to employ GAT-based encoder to learn dynamic representations for sub-trees constructed in previous transition steps. By incorporating these representations, our model is able to retain accessibility to all parsed EDUs through the obtained arcs, thus better utilizing the structural information of the document, particularly when handling lengthy text spans with complex structures. For the discourse relation recognition task, we employ edge-featured GATs to derive better representations for EDU pairs. Experimental results show that our model can achieve state-of-the-art performance on widely adopted datasets including RST-DT, SciDTB and CDTB. Our code is available at https://github.com/lty-lty/Discourse-Dependency-Parsing.

pdf bib
Improving Input-label Mapping with Demonstration Replay for In-context Learning
Zhuocheng Gong | Jiahao Liu | Qifan Wang | Jingang Wang | Xunliang Cai | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: EMNLP 2023

In-context learning (ICL) is an emerging capability of large autoregressive language models where a few input-label demonstrations are appended to the input to enhance the model’s understanding of downstream NLP tasks, without directly adjusting the model parameters. The effectiveness of ICL can be attributed to the strong language modeling capabilities of large language models (LLMs), which enable them to learn the mapping between input and labels based on in-context demonstrations. Despite achieving promising results, the causal nature of language modeling in ICL restricts the attention to be backward only, i.e., a token only attends to its previous tokens, failing to capture the full input-label information and limiting the model’s performance. In this paper, we propose a novel ICL method called Repeated Demonstration with Sliding Causal Attention, (RdSca). Specifically, we duplicate later demonstrations and concatenate them to the front, allowing the model to ‘observe’ the later information even under the causal restriction. Besides, we introduce sliding causal attention, which customizes causal attention to avoid information leakage. Experimental results show that our method significantly improves the input-label mapping in ICL demonstrations. We also conduct an in-depth analysis of how to customize the causal attention without training, which has been an unexplored area in previous research.

2022

pdf bib
Learning to Express in Knowledge-Grounded Conversation
Xueliang Zhao | Tingchen Fu | Chongyang Tao | Wei Wu | Dongyan Zhao | Rui Yan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Grounding dialogue generation by extra knowledge has shown great potentials towards building a system capable of replying with knowledgeable and engaging responses. Existing studies focus on how to synthesize a response with proper knowledge, yet neglect that the same knowledge could be expressed differently by speakers even under the same context. In this work, we mainly consider two aspects of knowledge expression, namely the structure of the response and style of the content in each part. We therefore introduce two sequential latent variables to represent the structure and the content style respectively. We propose a segmentation-based generation model and optimize the model by a variational approach to discover the underlying pattern of knowledge expression in a response. Evaluation results on two benchmarks indicate that our model can learn the structure style defined by a few examples and generate responses in desired content style.

pdf bib
ProphetChat: Enhancing Dialogue Generation with Simulation of Future Conversation
Chang Liu | Xu Tan | Chongyang Tao | Zhenxin Fu | Dongyan Zhao | Tie-Yan Liu | Rui Yan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Typical generative dialogue models utilize the dialogue history to generate the response. However, since one dialogue utterance can often be appropriately answered by multiple distinct responses, generating a desired response solely based on the historical information is not easy. Intuitively, if the chatbot can foresee in advance what the user would talk about (i.e., the dialogue future) after receiving its response, it could possibly provide a more informative response. Accordingly, we propose a novel dialogue generation framework named ProphetChat that utilizes the simulated dialogue futures in the inference phase to enhance response generation. To enable the chatbot to foresee the dialogue future, we design a beam-search-like roll-out strategy for dialogue future simulation using a typical dialogue generation model and a dialogue selector. With the simulated futures, we then utilize the ensemble of a history-to-response generator and a future-to-response generator to jointly generate a more informative response. Experiments on two popular open-domain dialogue datasets demonstrate that ProphetChat can generate better responses over strong baselines, which validates the advantages of incorporating the simulated dialogue futures.

pdf bib
Multi-Granularity Structural Knowledge Distillation for Language Model Compression
Chang Liu | Chongyang Tao | Jiazhan Feng | Dongyan Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transferring the knowledge to a small model through distillation has raised great interest in recent years. Prevailing methods transfer the knowledge derived from mono-granularity language units (e.g., token-level or sample-level), which is not enough to represent the rich semantics of a text and may lose some vital knowledge. Besides, these methods form the knowledge as individual representations or their simple dependencies, neglecting abundant structural relations among intermediate representations. To overcome the problems, we present a novel knowledge distillation framework that gathers intermediate representations from multiple semantic granularities (e.g., tokens, spans and samples) and forms the knowledge as more sophisticated structural relations specified as the pair-wise interactions and the triplet-wise geometric angles based on multi-granularity representations. Moreover, we propose distilling the well-organized multi-granularity structural knowledge to the student hierarchically across layers. Experimental results on GLUE benchmark demonstrate that our method outperforms advanced distillation methods.

pdf bib
Things not Written in Text: Exploring Spatial Commonsense from Visual Signals
Xiao Liu | Da Yin | Yansong Feng | Dongyan Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Spatial commonsense, the knowledge about spatial position and relationship between objects (like the relative size of a lion and a girl, and the position of a boy relative to a bicycle when cycling), is an important part of commonsense knowledge. Although pretrained language models (PLMs) succeed in many NLP tasks, they are shown to be ineffective in spatial commonsense reasoning. Starting from the observation that images are more likely to exhibit spatial commonsense than texts, we explore whether models with visual signals learn more spatial commonsense than text-based PLMs. We propose a spatial commonsense benchmark that focuses on the relative scales of objects, and the positional relationship between people and objects under different actions. We probe PLMs and models with visual signals, including vision-language pretrained models and image synthesis models, on this benchmark, and find that image synthesis models are more capable of learning accurate and consistent spatial knowledge than other models. The spatial knowledge from image synthesis models also helps in natural language understanding tasks that require spatial commonsense.

pdf bib
Keywords and Instances: A Hierarchical Contrastive Learning Framework Unifying Hybrid Granularities for Text Generation
Mingzhe Li | XieXiong Lin | Xiuying Chen | Jinxiong Chang | Qishen Zhang | Feng Wang | Taifeng Wang | Zhongyi Liu | Wei Chu | Dongyan Zhao | Rui Yan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Contrastive learning has achieved impressive success in generation tasks to militate the “exposure bias” problem and discriminatively exploit the different quality of references. Existing works mostly focus on contrastive learning on the instance-level without discriminating the contribution of each word, while keywords are the gist of the text and dominant the constrained mapping relationships. Hence, in this work, we propose a hierarchical contrastive learning mechanism, which can unify hybrid granularities semantic meaning in the input text. Concretely, we first propose a keyword graph via contrastive correlations of positive-negative pairs to iteratively polish the keyword representations. Then, we construct intra-contrasts within instance-level and keyword-level, where we assume words are sampled nodes from a sentence distribution. Finally, to bridge the gap between independent contrast levels and tackle the common contrast vanishing problem, we propose an inter-contrast mechanism that measures the discrepancy between contrastive keyword nodes respectively to the instance distribution. Experiments demonstrate that our model outperforms competitive baselines on paraphrasing, dialogue generation, and storytelling tasks.

pdf bib
Entailment Graph Learning with Textual Entailment and Soft Transitivity
Zhibin Chen | Yansong Feng | Dongyan Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Typed entailment graphs try to learn the entailment relations between predicates from text and model them as edges between predicate nodes. The construction of entailment graphs usually suffers from severe sparsity and unreliability of distributional similarity. We propose a two-stage method, Entailment Graph with Textual Entailment and Transitivity (EGT2). EGT2 learns the local entailment relations by recognizing the textual entailment between template sentences formed by typed CCG-parsed predicates. Based on the generated local graph, EGT2 then uses three novel soft transitivity constraints to consider the logical transitivity in entailment structures. Experiments on benchmark datasets show that EGT2 can well model the transitivity in entailment graph to alleviate the sparsity, and leads to signifcant improvement over current state-of-the-art methods.

pdf bib
Does Recommend-Revise Produce Reliable Annotations? An Analysis on Missing Instances in DocRED
Quzhe Huang | Shibo Hao | Yuan Ye | Shengqi Zhu | Yansong Feng | Dongyan Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

DocRED is a widely used dataset for document-level relation extraction. In the large-scale annotation, a recommend-revise scheme is adopted to reduce the workload. Within this scheme, annotators are provided with candidate relation instances from distant supervision, and they then manually supplement and remove relational facts based on the recommendations. However, when comparing DocRED with a subset relabeled from scratch, we find that this scheme results in a considerable amount of false negative samples and an obvious bias towards popular entities and relations. Furthermore, we observe that the models trained on DocRED have low recall on our relabeled dataset and inherit the same bias in the training data. Through the analysis of annotators’ behaviors, we figure out the underlying reason for the problems above: the scheme actually discourages annotators from supplementing adequate instances in the revision phase. We appeal to future research to take into consideration the issues with the recommend-revise scheme when designing new models and annotation schemes. The relabeled dataset is released at https://github.com/AndrewZhe/Revisit-DocRED, to serve as a more reliable test set of document RE models.

pdf bib
Neural Machine Translation with Contrastive Translation Memories
Xin Cheng | Shen Gao | Lemao Liu | Dongyan Zhao | Rui Yan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Retrieval-augmented Neural Machine Translation models have been successful in many translation scenarios. Different from previous works that make use of mutually similar but redundant translation memories (TMs), we propose a new retrieval-augmented NMT to model contrastively retrieved translation memories that are holistically similar to the source sentence while individually contrastive to each other providing maximal information gain in three phases. First, in TM retrieval phase, we adopt contrastive retrieval algorithm to avoid redundancy and uninformativeness of similar translation pieces. Second, in memory encoding stage, given a set of TMs we propose a novel Hierarchical Group Attention module to gather both local context of each TM and global context of the whole TM set. Finally, in training phase, a Multi-TM contrastive learning objective is introduced to learn salient feature of each TM with respect to target sentence. Experimental results show that our framework obtains substantial improvements over strong baselines in the benchmark dataset.

pdf bib
Counterfactual Recipe Generation: Exploring Compositional Generalization in a Realistic Scenario
Xiao Liu | Yansong Feng | Jizhi Tang | Chengang Hu | Dongyan Zhao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

People can acquire knowledge in an unsupervised manner by reading, and compose the knowledge to make novel combinations. In this paper, we investigate whether pretrained language models can perform compositional generalization in a realistic setting: recipe generation. We design the counterfactual recipe generation task, which asks models to modify a base recipe according to the change of an ingredient. This task requires compositional generalization at two levels: the surface level of incorporating the new ingredient into the base recipe, and the deeper level of adjusting actions related to the changing ingredient. We collect a large-scale recipe dataset in Chinese for models to learn culinary knowledge, and a subset of action-level fine-grained annotations for evaluation.We finetune pretrained language models on the recipe corpus, and use unsupervised counterfactual generation methods to generate modified recipes.Results show that existing models have difficulties in modifying the ingredients while preserving the original text style, and often miss actions that need to be adjusted. Although pretrained language models can generate fluent recipe texts, they fail to truly learn and use the culinary knowledge in a compositional way. Code and data are available at https://github.com/xxxiaol/counterfactual-recipe-generation.

pdf bib
Towards Efficient Dialogue Pre-training with Transferable and Interpretable Latent Structure
Xueliang Zhao | Lemao Liu | Tingchen Fu | Shuming Shi | Dongyan Zhao | Rui Yan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

With the availability of massive general-domain dialogue data, pre-trained dialogue generation appears to be super appealing to transfer knowledge from the general domain to downstream applications. In most existing work, such transferable ability is mainly obtained by fitting a large model with hundreds of millions of parameters on massive data in an exhaustive way, leading to inefficient running and poor interpretability. This paper proposes a novel dialogue generation model with a latent structure that is easily transferable from the general domain to downstream tasks in a lightweight and transparent way. Experiments on two benchmarks validate the effectiveness of the proposed model. Thanks to the transferable latent structure, our model is able to yield better dialogue responses than four strong baselines in terms of both automatic and human evaluations, and our model with about 22% parameters particularly delivers a 5x speedup in running time compared with the strongest baseline. Moreover, the proposed model is explainable by interpreting the discrete latent variables.

pdf bib
Rethinking Task-Specific Knowledge Distillation: Contextualized Corpus as Better Textbook
Chang Liu | Chongyang Tao | Jianxin Liang | Tao Shen | Jiazhan Feng | Quzhe Huang | Dongyan Zhao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge distillation has been proven effective when customizing small language models for specific tasks. Here, a corpus as ‘textbook’ plays an indispensable role, only through which the teacher can teach the student. Prevailing methods adopt a two-stage distillation paradigm: general distillation first with task-agnostic general corpus and task-specific distillation next with augmented task-specific corpus. We argue that such a paradigm may not be optimal. In general distillation, it’s extravagant to let the diverse but desultory general knowledge overwhelms the limited model capacity of the student. While in task-specific distillation, the task corpus is usually limited and narrow, preventing the student from learning enough knowledge. To mitigate the issues in the two gapped corpora, we present a better textbook for the student to learn: contextualized corpus that contextualizes task corpus with large-scale general corpus through relevance-based text retrieval. Experimental results on GLUE benchmark demonstrate that contextualized corpus is the better textbook compared with jointly using general corpus and augmented task-specific corpus. Surprisingly, it enables task-specific distillation from scratch without general distillation while maintaining comparable performance, making it more flexible to customize the student model with desired model size under various computation constraints.

pdf bib
Finding the Dominant Winning Ticket in Pre-Trained Language Models
Zhuocheng Gong | Di He | Yelong Shen | Tie-Yan Liu | Weizhu Chen | Dongyan Zhao | Ji-Rong Wen | Rui Yan
Findings of the Association for Computational Linguistics: ACL 2022

The Lottery Ticket Hypothesis suggests that for any over-parameterized model, a small subnetwork exists to achieve competitive performance compared to the backbone architecture. In this paper, we study whether there is a winning lottery ticket for pre-trained language models, which allow the practitioners to fine-tune the parameters in the ticket but achieve good downstream performance. To achieve this, we regularize the fine-tuning process with L1 distance and explore the subnetwork structure (what we refer to as the “dominant winning ticket”). Empirically, we show that (a) the dominant winning ticket can achieve performance that is comparable with that of the full-parameter model, (b) the dominant winning ticket is transferable across different tasks, (c) and the dominant winning ticket has a natural structure within each parameter matrix. Strikingly, we find that a dominant winning ticket that takes up 0.05% of the parameters can already achieve satisfactory performance, indicating that the PLM is significantly reducible during fine-tuning.

pdf bib
GNN-encoder: Learning a Dual-encoder Architecture via Graph Neural Networks for Dense Passage Retrieval
Jiduan Liu | Jiahao Liu | Yang Yang | Jingang Wang | Wei Wu | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: EMNLP 2022

Recently, retrieval models based on dense representations are dominant in passage retrieval tasks, due to their outstanding ability in terms of capturing semantics of input text compared to the traditional sparse vector space models. A common practice of dense retrieval models is to exploit a dual-encoder architecture to represent a query and a passage independently. Though efficient, such a structure loses interaction between the query-passage pair, resulting in inferior accuracy. To enhance the performance of dense retrieval models without loss of efficiency, we propose a GNN-encoder model in which query (passage) information is fused into passage (query) representations via graph neural networks that are constructed by queries and their top retrieved passages. By this means, we maintain a dual-encoder structure, and retain some interaction information between query-passage pairs in their representations, which enables us to achieve both efficiency and efficacy in passage retrieval. Evaluation results indicate that our method significantly outperforms the existing models on MSMARCO, Natural Questions and TriviaQA datasets, and achieves the new state-of-the-art on these datasets.

pdf bib
Summarizing Procedural Text: Data and Approach
Shen Gao | Haotong Zhang | Xiuying Chen | Rui Yan | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2022

Procedural text is a widely used genre that contains many steps of instructions of how to cook a dish or how to conduct a chemical experiment and analyze the procedural text has become a popular task in the NLP field. Since the procedural text can be very long and contains many details, summarizing the whole procedural text or giving an overview for each complicated procedure step can save time for readers and help them to capture the core information in the text. In this paper, we propose the procedural text summarization task with two summarization granularity: step-view and global-view, which summarizes each step in the procedural text separately or gives an overall summary for all steps respectively. To tackle this task, we propose an Entity-State Graph-based Summarizer (ESGS) which is based on state-of-the-art entity state tracking methods and constructs a heterogeneous graph to aggregate contextual information for each procedure. In order to help the summarization model focus on the salient entities, we propose to use the contextualized procedure graph representation to predict the salient entities. Experiments conducted on two datasets verify the effectiveness of our proposed model. Our code and datasets will be released on https://github.com/gsh199449/procedural-summ.

pdf bib
Do Charge Prediction Models Learn Legal Theory?
Zhenwei An | Quzhe Huang | Cong Jiang | Yansong Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2022

The charge prediction task aims to predict the charge for a case given its fact description. Recent models have already achieved impressive accuracy in this task, however, little is understood about the mechanisms they use to perform the judgment.For practical applications, a charge prediction model should conform to the certain legal theory in civil law countries, as under the framework of civil law, all cases are judged according to certain local legal theories. In China, for example, nearly all criminal judges make decisions based on the Four Elements Theory (FET).In this paper, we argue that trustworthy charge prediction models should take legal theories into consideration, and standing on prior studies in model interpretation, we propose three principles for trustworthy models should follow in this task, which are sensitive, selective, and presumption of innocence.We further design a new framework to evaluate whether existing charge prediction models learn legal theories. Our findings indicate that, while existing charge prediction models meet the selective principle on a benchmark dataset, most of them are still not sensitive enough and do not satisfy the presumption of innocence. Our code and dataset are released at https://github.com/ZhenweiAn/EXP_LJP.

pdf bib
Collaborative Reasoning on Multi-Modal Semantic Graphs for Video-Grounded Dialogue Generation
Xueliang Zhao | Yuxuan Wang | Chongyang Tao | Chenshuo Wang | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2022

We study video-grounded dialogue generation, where a response is generated based on the dialogue context and the associated video. The primary challenges of this task lie in (1) the difficulty of integrating video data into pre-trained language models (PLMs) which presents obstacles to exploiting the power of large-scale pre-training; and (2) the necessity of taking into account the complementarity of various modalities throughout the reasoning process. Although having made remarkable progress in video-grounded dialogue generation, existing methods still fall short when it comes to integrating with PLMs in a way that allows information from different modalities to complement each other. To alleviate these issues, we first propose extracting pertinent information from videos and turning it into reasoning paths that are acceptable to PLMs. Additionally, we propose a multi-agent reinforcement learning method to collaboratively perform reasoning on different modalities (i.e., video and dialogue context). Empirical experiment results on two public datasets indicate that the proposed model can significantly outperform state-of-the-art models by large margins on both automatic and human evaluations.

pdf bib
SMASH: Improving SMAll Language Models’ Few-SHot Ability with Prompt-Based Distillation
Yueqian Wang | Chang Liu | Kai Chen | Xi Wang | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2022

Large-scale language models coupled with prompts have shown remarkable performance on few-shot learning. However, through systematic experiments, we find that the few-shot performance of small language models is poor, and using prompts on them brings fewer improvements than on larger ones. In this paper, we propose SMASH, an approach to improve SMAll language models’ few-SHot ability by training on intermediate tasks before prompt-based fine-tuning on downstream tasks. We design intermediate tasks for sentence-pair tasks and sentiment classification tasks by creating training examples with prompt templates similar to downstream tasks using sentences sampled from a large-scale unsupervised corpus, and apply knowledge distillation to distill from outputs of larger pre-trained models as the training objective. We conduct extensive experiments and show that SMASH can make a 6-layer DistilRoBRETa-base achieve comparable performance on few-shot datasets with a 12-layer RoBERTa-base at a low cost.

pdf bib
How to Represent Context Better? An Empirical Study on Context Modeling for Multi-turn Response Selection
Jiazhan Feng | Chongyang Tao | Chang Liu | Rui Yan | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2022

Building retrieval-based dialogue models that can predict appropriate responses based on the understanding of multi-turn context messages is a challenging problem. Early models usually concatenate all utterances or independently encode each dialogue turn, which may lead to an inadequate understanding of dialogue status. Although a few researchers have noticed the importance of context modeling in multi-turn response prediction, there is no systematic comparison to analyze how to model context effectively and no framework to unify those methods. In this paper, instead of configuring new architectures, we investigate how to improve existing models with a better context modeling method. Specifically, we heuristically summarize three categories of turn-aware context modeling strategies which model the context messages from the perspective of sequential relationship, local relationship, and query-aware manner respectively. A Turn-Aware Context Modeling (TACM) layer is explored to flexibly adapt and unify these context modeling strategies to several advanced response selection models. Evaluation results on three public data sets indicate that employing each individual context modeling strategy or multiple strategies can consistently improve the performance of existing models.

pdf bib
Reciprocal Learning of Knowledge Retriever and Response Ranker for Knowledge-Grounded Conversations
Jiazhan Feng | Chongyang Tao | Zhen Li | Chang Liu | Tao Shen | Dongyan Zhao
Proceedings of the 29th International Conference on Computational Linguistics

Grounding dialogue agents with knowledge documents has sparked increased attention in both academia and industry. Recently, a growing body of work is trying to build retrieval-based knowledge-grounded dialogue systems. While promising, these approaches require collecting pairs of dialogue context and the corresponding ground-truth knowledge sentences that contain the information regarding the dialogue context. Unfortunately, hand-labeling data to that end is time-consuming, and many datasets and applications lack such knowledge annotations. In this paper, we propose a reciprocal learning approach to jointly optimize a knowledge retriever and a response ranker for knowledge-grounded response retrieval without ground-truth knowledge labels. Specifically, the knowledge retriever uses the feedback from the response ranker as pseudo supervised signals of knowledge retrieval for updating its parameters, while the response ranker also receives the top-ranked knowledge sentences from knowledge retriever for optimization. Evaluation results on two public benchmarks show that our model can significantly outperform previous state-of-the-art methods.

2021

pdf bib
Exploring Distantly-Labeled Rationales in Neural Network Models
Quzhe Huang | Shengqi Zhu | Yansong Feng | Dongyan Zhao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent studies strive to incorporate various human rationales into neural networks to improve model performance, but few pay attention to the quality of the rationales. Most existing methods distribute their models’ focus to distantly-labeled rationale words entirely and equally, while ignoring the potential important non-rationale words and not distinguishing the importance of different rationale words. In this paper, we propose two novel auxiliary loss functions to make better use of distantly-labeled rationales, which encourage models to maintain their focus on important words beyond labeled rationales (PINs) and alleviate redundant training on non-helpful rationales (NoIRs). Experiments on two representative classification tasks show that our proposed methods can push a classification model to effectively learn crucial clues from non-perfect rationales while maintaining the ability to spread its focus to other unlabeled important words, thus significantly outperform existing methods.

pdf bib
Capturing Relations between Scientific Papers: An Abstractive Model for Related Work Section Generation
Xiuying Chen | Hind Alamro | Mingzhe Li | Shen Gao | Xiangliang Zhang | Dongyan Zhao | Rui Yan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Given a set of related publications, related work section generation aims to provide researchers with an overview of the specific research area by summarizing these works and introducing them in a logical order. Most of existing related work generation models follow the inflexible extractive style, which directly extract sentences from multiple original papers to form a related work discussion. Hence, in this paper, we propose a Relation-aware Related work Generator (RRG), which generates an abstractive related work from the given multiple scientific papers in the same research area. Concretely, we propose a relation-aware multi-document encoder that relates one document to another according to their content dependency in a relation graph. The relation graph and the document representation are interacted and polished iteratively, complementing each other in the training process. We also contribute two public datasets composed of related work sections and their corresponding papers. Extensive experiments on the two datasets show that the proposed model brings substantial improvements over several strong baselines. We hope that this work will promote advances in related work generation task.

pdf bib
Three Sentences Are All You Need: Local Path Enhanced Document Relation Extraction
Quzhe Huang | Shengqi Zhu | Yansong Feng | Yuan Ye | Yuxuan Lai | Dongyan Zhao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Document-level Relation Extraction (RE) is a more challenging task than sentence RE as it often requires reasoning over multiple sentences. Yet, human annotators usually use a small number of sentences to identify the relationship between a given entity pair. In this paper, we present an embarrassingly simple but effective method to heuristically select evidence sentences for document-level RE, which can be easily combined with BiLSTM to achieve good performance on benchmark datasets, even better than fancy graph neural network based methods. We have released our code at https://github.com/AndrewZhe/Three-Sentences-Are-All-You-Need.

pdf bib
Learning to Organize a Bag of Words into Sentences with Neural Networks: An Empirical Study
Chongyang Tao | Shen Gao | Juntao Li | Yansong Feng | Dongyan Zhao | Rui Yan
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Sequential information, a.k.a., orders, is assumed to be essential for processing a sequence with recurrent neural network or convolutional neural network based encoders. However, is it possible to encode natural languages without orders? Given a bag of words from a disordered sentence, humans may still be able to understand what those words mean by reordering or reconstructing them. Inspired by such an intuition, in this paper, we perform a study to investigate how “order” information takes effects in natural language learning. By running comprehensive comparisons, we quantitatively compare the ability of several representative neural models to organize sentences from a bag of words under three typical scenarios, and summarize some empirical findings and challenges, which can shed light on future research on this line of work.

pdf bib
Lattice-BERT: Leveraging Multi-Granularity Representations in Chinese Pre-trained Language Models
Yuxuan Lai | Yijia Liu | Yansong Feng | Songfang Huang | Dongyan Zhao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Chinese pre-trained language models usually process text as a sequence of characters, while ignoring more coarse granularity, e.g., words. In this work, we propose a novel pre-training paradigm for Chinese — Lattice-BERT, which explicitly incorporates word representations along with characters, thus can model a sentence in a multi-granularity manner. Specifically, we construct a lattice graph from the characters and words in a sentence and feed all these text units into transformers. We design a lattice position attention mechanism to exploit the lattice structures in self-attention layers. We further propose a masked segment prediction task to push the model to learn from rich but redundant information inherent in lattices, while avoiding learning unexpected tricks. Experiments on 11 Chinese natural language understanding tasks show that our model can bring an average increase of 1.5% under the 12-layer setting, which achieves new state-of-the-art among base-size models on the CLUE benchmarks. Further analysis shows that Lattice-BERT can harness the lattice structures, and the improvement comes from the exploration of redundant information and multi-granularity representations. Our code will be available at https://github.com/alibaba/pretrained-language-models/LatticeBERT.

pdf bib
Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis
Xiao Liu | Da Yin | Yansong Feng | Yuting Wu | Dongyan Zhao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Causal inference is the process of capturing cause-effect relationship among variables. Most existing works focus on dealing with structured data, while mining causal relationship among factors from unstructured data, like text, has been less examined, but is of great importance, especially in the legal domain. In this paper, we propose a novel Graph-based Causal Inference (GCI) framework, which builds causal graphs from fact descriptions without much human involvement and enables causal inference to facilitate legal practitioners to make proper decisions. We evaluate the framework on a challenging similar charge disambiguation task. Experimental results show that GCI can capture the nuance from fact descriptions among multiple confusing charges and provide explainable discrimination, especially in few-shot settings. We also observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.

pdf bib
Why Machine Reading Comprehension Models Learn Shortcuts?
Yuxuan Lai | Chen Zhang | Yansong Feng | Quzhe Huang | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
BioGen: Generating Biography Summary under Table Guidance on Wikipedia
Shen Gao | Xiuying Chen | Chang Liu | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Enhancing the Open-Domain Dialogue Evaluation in Latent Space
Zhangming Chan | Lemao Liu | Juntao Li | Haisong Zhang | Dongyan Zhao | Shuming Shi | Rui Yan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Combining Curriculum Learning and Knowledge Distillation for Dialogue Generation
Qingqing Zhu | Xiuying Chen | Pengfei Wu | JunFei Liu | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2021

Curriculum learning, a machine training strategy that feeds training instances to the model from easy to hard, has been proven to facilitate the dialogue generation task. Meanwhile, knowledge distillation, a knowledge transformation methodology among teachers and students networks can yield significant performance boost for student models. Hence, in this paper, we introduce a combination of curriculum learning and knowledge distillation for efficient dialogue generation models, where curriculum learning can help knowledge distillation from data and model aspects. To start with, from the data aspect, we cluster the training cases according to their complexity, which is calculated by various types of features such as sentence length and coherence between dialog pairs. Furthermore, we employ an adversarial training strategy to identify the complexity of cases from model level. The intuition is that, if a discriminator can tell the generated response is from the teacher or the student, then the case is difficult that the student model has not adapted to yet. Finally, we use self-paced learning, which is an extension to curriculum learning to assign weights for distillation. In conclusion, we arrange a hierarchical curriculum based on the above two aspects for the student model under the guidance from the teacher model. Experimental results demonstrate that our methods achieve improvements compared with competitive baselines.

pdf bib
Extract, Integrate, Compete: Towards Verification Style Reading Comprehension
Chen Zhang | Yuxuan Lai | Yansong Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2021

In this paper, we present a new verification style reading comprehension dataset named VGaokao from Chinese Language tests of Gaokao. Different from existing efforts, the new dataset is originally designed for native speakers’ evaluation, thus requiring more advanced language understanding skills. To address the challenges in VGaokao, we propose a novel Extract-Integrate-Compete approach, which iteratively selects complementary evidence with a novel query updating mechanism and adaptively distills supportive evidence, followed by a pairwise competition to push models to learn the subtle difference among similar text pieces. Experiments show that our methods outperform various baselines on VGaokao with retrieved complementary evidence, while having the merits of efficiency and explainability. Our dataset and code are released for further research.

2020

pdf bib
Transformation of Dense and Sparse Text Representations
Wenpeng Hu | Mengyu Wang | Bing Liu | Feng Ji | Jinwen Ma | Dongyan Zhao
Proceedings of the 28th International Conference on Computational Linguistics

Sparsity is regarded as a desirable property of representations, especially in terms of explanation. However, its usage has been limited due to the gap with dense representations. Most research progresses in NLP in recent years are based on dense representations. Thus the desirable property of sparsity cannot be leveraged. Inspired by Fourier Transformation, in this paper, we propose a novel Semantic Transformation method to bridge the dense and sparse spaces, which can facilitate the NLP research to shift from dense spaces to sparse spaces or to jointly use both spaces. Experiments using classification tasks and natural language inference task show that the proposed Semantic Transformation is effective.

pdf bib
Translation vs. Dialogue: A Comparative Analysis of Sequence-to-Sequence Modeling
Wenpeng Hu | Ran Le | Bing Liu | Jinwen Ma | Dongyan Zhao | Rui Yan
Proceedings of the 28th International Conference on Computational Linguistics

Understanding neural models is a major topic of interest in the deep learning community. In this paper, we propose to interpret a general neural model comparatively. Specifically, we study the sequence-to-sequence (Seq2Seq) model in the contexts of two mainstream NLP tasks–machine translation and dialogue response generation–as they both use the seq2seq model. We investigate how the two tasks are different and how their task difference results in major differences in the behaviors of the resulting translation and dialogue generation systems. This study allows us to make several interesting observations and gain valuable insights, which can be used to help develop better translation and dialogue generation models. To our knowledge, no such comparative study has been done so far.

pdf bib
Neighborhood Matching Network for Entity Alignment
Yuting Wu | Xiao Liu | Yansong Feng | Zheng Wang | Dongyan Zhao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Structural heterogeneity between knowledge graphs is an outstanding challenge for entity alignment. This paper presents Neighborhood Matching Network (NMN), a novel entity alignment framework for tackling the structural heterogeneity challenge. NMN estimates the similarities between entities to capture both the topological structure and the neighborhood difference. It provides two innovative components for better learning representations for entity alignment. It first uses a novel graph sampling method to distill a discriminative neighborhood for each entity. It then adopts a cross-graph neighborhood matching module to jointly encode the neighborhood difference for a given entity pair. Such strategies allow NMN to effectively construct matching-oriented entity representations while ignoring noisy neighbors that have a negative impact on the alignment task. Extensive experiments performed on three entity alignment datasets show that NMN can well estimate the neighborhood similarity in more tough cases and significantly outperforms 12 previous state-of-the-art methods.

pdf bib
Towards Context-Aware Code Comment Generation
Xiaohan Yu | Quzhe Huang | Zheng Wang | Yansong Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2020

Code comments are vital for software maintenance and comprehension, but many software projects suffer from the lack of meaningful and up-to-date comments in practice. This paper presents a novel approach to automatically generate code comments at a function level by targeting object-oriented programming languages. Unlike prior work that only uses information locally available within the target function, our approach leverages broader contextual information by considering all other functions of the same class. To propagate and integrate information beyond the scope of the target function, we design a novel learning framework based on the bidirectional gated recurrent unit and a graph attention network with a pointer mechanism. We apply our approach to produce code comments for Java methods and compare it against four strong baseline methods. Experimental results show that our approach outperforms most methods by a large margin and achieves a comparable result with the state-of-the-art method.

pdf bib
Combining Impression Feature Representation for Multi-turn Conversational Question Answering
Shaoling Jing | Shibo Hong | Dongyan Zhao | Haihua Xie | Zhi Tang
Proceedings of the 19th Chinese National Conference on Computational Linguistics

Multi-turn conversational Question Answering (ConvQA) is a practical task that requires the understanding of conversation history, such as previous QA pairs, the passage context, and current question. It can be applied to a variety of scenarios with human-machine dialogue. The major challenge of this task is to require the model to consider the relevant conversation history while understanding the passage. Existing methods usually simply prepend the history to the current question, or use the complicated mechanism to model the history. This article proposes an impression feature, which use the word-level inter attention mechanism to learn multi-oriented information from conversation history to the input sequence, including attention from history tokens to each token of the input sequence, and history turn inter attention from different history turns to each token of the input sequence, and self-attention within input sequence, where the input sequence contains a current question and a passage. Then a feature selection method is designed to enhance the useful history turns of conversation and weaken the unnecessary information. Finally, we demonstrate the effectiveness of the proposed method on the QuAC dataset, analyze the impact of different feature selection methods, and verify the validity and reliability of the proposed features through visualization and human evaluation.

pdf bib
Plan-CVAE: A Planning-based Conditional Variational Autoencoder for Story Generation
Lin Wang | Juntao Li | Rui Yan | Dongyan Zhao
Proceedings of the 19th Chinese National Conference on Computational Linguistics

Story generation is a challenging task of automatically creating natural languages to describe a sequence of events, which requires outputting text with not only a consistent topic but also novel wordings. Although many approaches have been proposed and obvious progress has been made on this task, there is still a large room for improvement, especially for improving thematic consistency and wording diversity. To mitigate the gap between generated stories and those written by human writers, in this paper, we propose a planning-based conditional variational autoencoder, namely Plan-CVAE, which first plans a keyword sequence and then generates a story based on the keyword sequence. In our method, the keywords planning strategy is used to improve thematic consistency while the CVAE module allows enhancing wording diversity. Experimental results on a benchmark dataset confirm that our proposed method can generate stories with both thematic consistency and wording novelty, and outperforms state-of-the-art methods on both automatic metrics and human evaluations.

pdf bib
A Novel Joint Framework for Multiple Chinese Events Extraction
Nuo Xu | Haihua Xie | Dongyan Zhao
Proceedings of the 19th Chinese National Conference on Computational Linguistics

Event extraction is an essential yet challenging task in information extraction. Previous approaches have paid little attention to the problem of roles overlap which is a common phenomenon in practice. To solve this problem, this paper defines event relation triple to explicitly represent relations among triggers, arguments and roles which are incorporated into the model to learn their inter-dependencies. The task of argument extraction is converted to event relation triple extraction. A novel joint framework for multiple Chinese event extraction is proposed which jointly performs predictions for event triggers and arguments based on shared feature representations from pre-trained language model. Experimental comparison with state-of-the-art baselines on ACE 2005 dataset shows the superiority of the proposed method in both trigger classification and argument classification.

pdf bib
Knowledge-Grounded Dialogue Generation with Pre-trained Language Models
Xueliang Zhao | Wei Wu | Can Xu | Chongyang Tao | Dongyan Zhao | Rui Yan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We study knowledge-grounded dialogue generation with pre-trained language models. To leverage the redundant external knowledge under capacity constraint, we propose equipping response generation defined by a pre-trained language model with a knowledge selection module, and an unsupervised approach to jointly optimizing knowledge selection and response generation with unlabeled dialogues. Empirical results on two benchmarks indicate that our model can significantly outperform state-of-the-art methods in both automatic evaluation and human judgment.

pdf bib
Selection and Generation: Learning towards Multi-Product Advertisement Post Generation
Zhangming Chan | Yuchi Zhang | Xiuying Chen | Shen Gao | Zhiqiang Zhang | Dongyan Zhao | Rui Yan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

As the E-commerce thrives, high-quality online advertising copywriting has attracted more and more attention. Different from the advertising copywriting for a single product, an advertisement (AD) post includes an attractive topic that meets the customer needs and description copywriting about several products under its topic. A good AD post can highlight the characteristics of each product, thus helps customers make a good choice among candidate products. Hence, multi-product AD post generation is meaningful and important. We propose a novel end-to-end model named S-MG Net to generate the AD post. Targeted at such a challenging real-world problem, we split the AD post generation task into two subprocesses: (1) select a set of products via the SelectNet (Selection Network). (2) generate a post including selected products via the MGenNet (Multi-Generator Network). Concretely, SelectNet first captures the post topic and the relationship among the products to output the representative products. Then, MGenNet generates the description copywriting of each product. Experiments conducted on a large-scale real-world AD post dataset demonstrate that our proposed model achieves impressive performance in terms of both automatic metrics as well as human evaluations.

pdf bib
Understanding Procedural Text using Interactive Entity Networks
Jizhi Tang | Yansong Feng | Dongyan Zhao
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The task of procedural text comprehension aims to understand the dynamic nature of entities/objects in a process. Here, the key is to track how the entities interact with each other and how their states are changing along the procedure. Recent efforts have made great progress to track multiple entities in a procedural text, but usually treat each entity separately and ignore the fact that there are often multiple entities interacting with each other during one process, some of which are even explicitly mentioned. In this paper, we propose a novel Interactive Entity Network (IEN), which is a recurrent network with memory equipped cells for state tracking. In each IEN cell, we maintain different attention matrices through specific memories to model different types of entity interactions. Importantly, we can update these memories in a sequential manner so as to explore the causal relationship between entity actions and subsequent state changes. We evaluate our model on a benchmark dataset, and the results show that IEN outperforms state-of-the-art models by precisely capturing the interactions of multiple entities and explicitly leverage the relationship between entity interactions and subsequent state changes.

pdf bib
VMSMO: Learning to Generate Multimodal Summary for Video-based News Articles
Mingzhe Li | Xiuying Chen | Shen Gao | Zhangming Chan | Dongyan Zhao | Rui Yan
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

A popular multimedia news format nowadays is providing users with a lively video and a corresponding news article, which is employed by influential news media including CNN, BBC, and social media including Twitter and Weibo. In such a case, automatically choosing a proper cover frame of the video and generating an appropriate textual summary of the article can help editors save time, and readers make the decision more effectively. Hence, in this paper, we propose the task of Video-based Multimodal Summarization with Multimodal Output (VMSMO) to tackle such a problem. The main challenge in this task is to jointly model the temporal dependency of video with semantic meaning of article. To this end, we propose a Dual-Interaction-based Multimodal Summarizer (DIMS), consisting of a dual interaction module and multimodal generator. In the dual interaction module, we propose a conditional self-attention mechanism that captures local semantic information within video and a global-attention mechanism that handles the semantic relationship between news text and video from a high level. Extensive experiments conducted on a large-scale real-world VMSMO dataset show that DIMS achieves the state-of-the-art performance in terms of both automatic metrics and human evaluations.

2019

pdf bib
One Time of Interaction May Not Be Enough: Go Deep with an Interaction-over-Interaction Network for Response Selection in Dialogues
Chongyang Tao | Wei Wu | Can Xu | Wenpeng Hu | Dongyan Zhao | Rui Yan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Currently, researchers have paid great attention to retrieval-based dialogues in open-domain. In particular, people study the problem by investigating context-response matching for multi-turn response selection based on publicly recognized benchmark data sets. State-of-the-art methods require a response to interact with each utterance in a context from the beginning, but the interaction is performed in a shallow way. In this work, we let utterance-response interaction go deep by proposing an interaction-over-interaction network (IoI). The model performs matching by stacking multiple interaction blocks in which residual information from one time of interaction initiates the interaction process again. Thus, matching information within an utterance-response pair is extracted from the interaction of the pair in an iterative fashion, and the information flows along the chain of the blocks via representations. Evaluation results on three benchmark data sets indicate that IoI can significantly outperform state-of-the-art methods in terms of various matching metrics. Through further analysis, we also unveil how the depth of interaction affects the performance of IoI.

pdf bib
Learning a Matching Model with Co-teaching for Multi-turn Response Selection in Retrieval-based Dialogue Systems
Jiazhan Feng | Chongyang Tao | Wei Wu | Yansong Feng | Dongyan Zhao | Rui Yan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We study learning of a matching model for response selection in retrieval-based dialogue systems. The problem is equally important with designing the architecture of a model, but is less explored in existing literature. To learn a robust matching model from noisy training data, we propose a general co-teaching framework with three specific teaching strategies that cover both teaching with loss functions and teaching with data curriculum. Under the framework, we simultaneously learn two matching models with independent training sets. In each iteration, one model transfers the knowledge learned from its training set to the other model, and at the same time receives the guide from the other model on how to overcome noise in training. Through being both a teacher and a student, the two models learn from each other and get improved together. Evaluation results on two public data sets indicate that the proposed learning approach can generally and significantly improve the performance of existing matching models.

pdf bib
Are Training Samples Correlated? Learning to Generate Dialogue Responses with Multiple References
Lisong Qiu | Juntao Li | Wei Bi | Dongyan Zhao | Rui Yan
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Due to its potential applications, open-domain dialogue generation has become popular and achieved remarkable progress in recent years, but sometimes suffers from generic responses. Previous models are generally trained based on 1-to-1 mapping from an input query to its response, which actually ignores the nature of 1-to-n mapping in dialogue that there may exist multiple valid responses corresponding to the same query. In this paper, we propose to utilize the multiple references by considering the correlation of different valid responses and modeling the 1-to-n mapping with a novel two-step generation architecture. The first generation phase extracts the common features of different responses which, combined with distinctive features obtained in the second phase, can generate multiple diverse and appropriate responses. Experimental results show that our proposed model can effectively improve the quality of response and outperform existing neural dialogue models on both automatic and human evaluations.

pdf bib
Jointly Learning Entity and Relation Representations for Entity Alignment
Yuting Wu | Xiao Liu | Yansong Feng | Zheng Wang | Dongyan Zhao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Entity alignment is a viable means for integrating heterogeneous knowledge among different knowledge graphs (KGs). Recent developments in the field often take an embedding-based approach to model the structural information of KGs so that entity alignment can be easily performed in the embedding space. However, most existing works do not explicitly utilize useful relation representations to assist in entity alignment, which, as we will show in the paper, is a simple yet effective way for improving entity alignment. This paper presents a novel joint learning framework for entity alignment. At the core of our approach is a Graph Convolutional Network (GCN) based framework for learning both entity and relation representations. Rather than relying on pre-aligned relation seeds to learn relation representations, we first approximate them using entity embeddings learned by the GCN. We then incorporate the relation approximation into entities to iteratively learn better representations for both. Experiments performed on three real-world cross-lingual datasets show that our approach substantially outperforms state-of-the-art entity alignment methods.

pdf bib
Sampling Matters! An Empirical Study of Negative Sampling Strategies for Learning of Matching Models in Retrieval-based Dialogue Systems
Jia Li | Chongyang Tao | Wei Wu | Yansong Feng | Dongyan Zhao | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We study how to sample negative examples to automatically construct a training set for effective model learning in retrieval-based dialogue systems. Following an idea of dynamically adapting negative examples to matching models in learning, we consider four strategies including minimum sampling, maximum sampling, semi-hard sampling, and decay-hard sampling. Empirical studies on two benchmarks with three matching models indicate that compared with the widely used random sampling strategy, although the first two strategies lead to performance drop, the latter two ones can bring consistent improvement to the performance of all the models on both benchmarks.

pdf bib
Who Is Speaking to Whom? Learning to Identify Utterance Addressee in Multi-Party Conversations
Ran Le | Wenpeng Hu | Mingyue Shang | Zhenjun You | Lidong Bing | Dongyan Zhao | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Previous research on dialogue systems generally focuses on the conversation between two participants, yet multi-party conversations which involve more than two participants within one session bring up a more complicated but realistic scenario. In real multi- party conversations, we can observe who is speaking, but the addressee information is not always explicit. In this paper, we aim to tackle the challenge of identifying all the miss- ing addressees in a conversation session. To this end, we introduce a novel who-to-whom (W2W) model which models users and utterances in the session jointly in an interactive way. We conduct experiments on the benchmark Ubuntu Multi-Party Conversation Corpus and the experimental results demonstrate that our model outperforms baselines with consistent improvements.

pdf bib
Modeling Personalization in Continuous Space for Response Generation via Augmented Wasserstein Autoencoders
Zhangming Chan | Juntao Li | Xiaopeng Yang | Xiuying Chen | Wenpeng Hu | Dongyan Zhao | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Variational autoencoders (VAEs) and Wasserstein autoencoders (WAEs) have achieved noticeable progress in open-domain response generation. Through introducing latent variables in continuous space, these models are capable of capturing utterance-level semantics, e.g., topic, syntactic properties, and thus can generate informative and diversified responses. In this work, we improve the WAE for response generation. In addition to the utterance-level information, we also model user-level information in latent continue space. Specifically, we embed user-level and utterance-level information into two multimodal distributions, and combine these two multimodal distributions into a mixed distribution. This mixed distribution will be used as the prior distribution of WAE in our proposed model, named as PersonaWAE. Experimental results on a large-scale real-world dataset confirm the superiority of our model for generating informative and personalized responses, where both automatic and human evaluations outperform state-of-the-art models.

pdf bib
Learning to Update Knowledge Graphs by Reading News
Jizhi Tang | Yansong Feng | Dongyan Zhao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

News streams contain rich up-to-date information which can be used to update knowledge graphs (KGs). Most current text-based KG updating methods rely on elaborately designed information extraction (IE) systems and carefully crafted rules, which are often domain-specific and hard to maintain. Besides, such methods often hardly pay enough attention to the implicit information that lies underneath texts. In this paper, we propose a novel neural network method, GUpdater, to tackle these problems. GUpdater is built upon graph neural networks (GNNs) with a text-based attention mechanism to guide the updating message passing through the KG structures. Experiments on a real-world KG updating dataset show that our model can effectively broadcast the news information to the KG structures and perform necessary link-adding or link-deleting operations to ensure the KG up-to-date according to news snippets.

pdf bib
How to Write Summaries with Patterns? Learning towards Abstractive Summarization through Prototype Editing
Shen Gao | Xiuying Chen | Piji Li | Zhangming Chan | Dongyan Zhao | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Under special circumstances, summaries should conform to a particular style with patterns, such as court judgments and abstracts in academic papers. To this end, the prototype document-summary pairs can be utilized to generate better summaries. There are two main challenges in this task: (1) the model needs to incorporate learned patterns from the prototype, but (2) should avoid copying contents other than the patternized words—such as irrelevant facts—into the generated summaries. To tackle these challenges, we design a model named Prototype Editing based Summary Generator (PESG). PESG first learns summary patterns and prototype facts by analyzing the correlation between a prototype document and its summary. Prototype facts are then utilized to help extract facts from the input document. Next, an editing generator generates new summary based on the summary pattern or extracted facts. Finally, to address the second challenge, a fact checker is used to estimate mutual information between the input document and generated summary, providing an additional signal for the generator. Extensive experiments conducted on a large-scale real-world text summarization dataset show that PESG achieves the state-of-the-art performance in terms of both automatic metrics and human evaluations.

pdf bib
Semi-supervised Text Style Transfer: Cross Projection in Latent Space
Mingyue Shang | Piji Li | Zhenxin Fu | Lidong Bing | Dongyan Zhao | Shuming Shi | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text style transfer task requires the model to transfer a sentence of one style to another style while retaining its original content meaning, which is a challenging problem that has long suffered from the shortage of parallel data. In this paper, we first propose a semi-supervised text style transfer model that combines the small-scale parallel data with the large-scale nonparallel data. With these two types of training data, we introduce a projection function between the latent space of different styles and design two constraints to train it. We also introduce two other simple but effective semi-supervised methods to compare with. To evaluate the performance of the proposed methods, we build and release a novel style transfer dataset that alters sentences between the style of ancient Chinese poem and the modern Chinese.

pdf bib
Stick to the Facts: Learning towards a Fidelity-oriented E-Commerce Product Description Generation
Zhangming Chan | Xiuying Chen | Yongliang Wang | Juntao Li | Zhiqiang Zhang | Kun Gai | Dongyan Zhao | Rui Yan
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Different from other text generation tasks, in product description generation, it is of vital importance to generate faithful descriptions that stick to the product attribute information. However, little attention has been paid to this problem. To bridge this gap we propose a model named Fidelity-oriented Product Description Generator (FPDG). FPDG takes the entity label of each word into account, since the product attribute information is always conveyed by entity words. Specifically, we first propose a Recurrent Neural Network (RNN) decoder based on the Entity-label-guided Long Short-Term Memory (ELSTM) cell, taking both the embedding and the entity label of each word as input. Second, we establish a keyword memory that stores the entity labels as keys and keywords as values, and FPDG will attend to keywords through attending to their entity labels. Experiments conducted a large-scale real-world product description dataset show that our model achieves the state-of-the-art performance in terms of both traditional generation metrics as well as human evaluations. Specifically, FPDG increases the fidelity of the generated descriptions by 25%.

2018

pdf bib
Marrying Up Regular Expressions with Neural Networks: A Case Study for Spoken Language Understanding
Bingfeng Luo | Yansong Feng | Zheng Wang | Songfang Huang | Rui Yan | Dongyan Zhao
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The success of many natural language processing (NLP) tasks is bound by the number and quality of annotated data, but there is often a shortage of such training data. In this paper, we ask the question: “Can we combine a neural network (NN) with regular expressions (RE) to improve supervised learning for NLP?”. In answer, we develop novel methods to exploit the rich expressiveness of REs at different levels within a NN, showing that the combination significantly enhances the learning effectiveness when a small number of training examples are available. We evaluate our approach by applying it to spoken language understanding for intent detection and slot filling. Experimental results show that our approach is highly effective in exploiting the available training data, giving a clear boost to the RE-unaware NN.

pdf bib
Modeling discourse cohesion for discourse parsing via memory network
Yanyan Jia | Yuan Ye | Yansong Feng | Yuxuan Lai | Rui Yan | Dongyan Zhao
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Identifying long-span dependencies between discourse units is crucial to improve discourse parsing performance. Most existing approaches design sophisticated features or exploit various off-the-shelf tools, but achieve little success. In this paper, we propose a new transition-based discourse parser that makes use of memory networks to take discourse cohesion into account. The automatically captured discourse cohesion benefits discourse parsing, especially for long span scenarios. Experiments on the RST discourse treebank show that our method outperforms traditional featured based methods, and the memory based discourse cohesion can improve the overall parsing performance significantly.

pdf bib
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations
Dongyan Zhao
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations

pdf bib
Multi-grained Attention Network for Aspect-Level Sentiment Classification
Feifan Fan | Yansong Feng | Dongyan Zhao
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We propose a novel multi-grained attention network (MGAN) model for aspect level sentiment classification. Existing approaches mostly adopt coarse-grained attention mechanism, which may bring information loss if the aspect has multiple words or larger context. We propose a fine-grained attention mechanism, which can capture the word-level interaction between aspect and context. And then we leverage the fine-grained and coarse-grained attention mechanisms to compose the MGAN framework. Moreover, unlike previous works which train each aspect with its context separately, we design an aspect alignment loss to depict the aspect-level interactions among the aspects that have the same context. We evaluate the proposed approach on three datasets: laptop and restaurant are from SemEval 2014, and the last one is a twitter dataset. Experimental results show that the multi-grained attention network consistently outperforms the state-of-the-art methods on all three datasets. We also conduct experiments to evaluate the effectiveness of aspect alignment loss, which indicates the aspect-level interactions can bring extra useful information and further improve the performance.

pdf bib
Generating Classical Chinese Poems via Conditional Variational Autoencoder and Adversarial Training
Juntao Li | Yan Song | Haisong Zhang | Dongmin Chen | Shuming Shi | Dongyan Zhao | Rui Yan
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

It is a challenging task to automatically compose poems with not only fluent expressions but also aesthetic wording. Although much attention has been paid to this task and promising progress is made, there exist notable gaps between automatically generated ones with those created by humans, especially on the aspects of term novelty and thematic consistency. Towards filling the gap, in this paper, we propose a conditional variational autoencoder with adversarial training for classical Chinese poem generation, where the autoencoder part generates poems with novel terms and a discriminator is applied to adversarially learn their thematic consistency with their titles. Experimental results on a large poetry corpus confirm the validity and effectiveness of our model, where its automatic and human evaluation scores outperform existing models.

pdf bib
Iterative Document Representation Learning Towards Summarization with Polishing
Xiuying Chen | Shen Gao | Chongyang Tao | Yan Song | Dongyan Zhao | Rui Yan
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this paper, we introduce Iterative Text Summarization (ITS), an iteration-based model for supervised extractive text summarization, inspired by the observation that it is often necessary for a human to read an article multiple times in order to fully understand and summarize its contents. Current summarization approaches read through a document only once to generate a document representation, resulting in a sub-optimal representation. To address this issue we introduce a model which iteratively polishes the document representation on many passes through the document. As part of our model, we also introduce a selective reading mechanism that decides more accurately the extent to which each sentence in the model should be updated. Experimental results on the CNN/DailyMail and DUC2002 datasets demonstrate that our model significantly outperforms state-of-the-art extractive systems when evaluated by machines and by humans.

2017

pdf bib
Diversifying Neural Conversation Model with Maximal Marginal Relevance
Yiping Song | Zhiliang Tian | Dongyan Zhao | Ming Zhang | Rui Yan
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Neural conversation systems, typically using sequence-to-sequence (seq2seq) models, are showing promising progress recently. However, traditional seq2seq suffer from a severe weakness: during beam search decoding, they tend to rank universal replies at the top of the candidate list, resulting in the lack of diversity among candidate replies. Maximum Marginal Relevance (MMR) is a ranking algorithm that has been widely used for subset selection. In this paper, we propose the MMR-BS decoding method, which incorporates MMR into the beam search (BS) process of seq2seq. The MMR-BS method improves the diversity of generated replies without sacrificing their high relevance with the user-issued query. Experiments show that our proposed model achieves the best performance among other comparison methods.

pdf bib
Towards Implicit Content-Introducing for Generative Short-Text Conversation Systems
Lili Yao | Yaoyuan Zhang | Yansong Feng | Dongyan Zhao | Rui Yan
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The study on human-computer conversation systems is a hot research topic nowadays. One of the prevailing methods to build the system is using the generative Sequence-to-Sequence (Seq2Seq) model through neural networks. However, the standard Seq2Seq model is prone to generate trivial responses. In this paper, we aim to generate a more meaningful and informative reply when answering a given question. We propose an implicit content-introducing method which incorporates additional information into the Seq2Seq model in a flexible way. Specifically, we fuse the general decoding and the auxiliary cue word information through our proposed hierarchical gated fusion unit. Experiments on real-life data demonstrate that our model consistently outperforms a set of competitive baselines in terms of BLEU scores and human evaluation.

pdf bib
Learning to Predict Charges for Criminal Cases with Legal Basis
Bingfeng Luo | Yansong Feng | Jianbo Xu | Xiang Zhang | Dongyan Zhao
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

The charge prediction task is to determine appropriate charges for a given case, which is helpful for legal assistant systems where the user input is fact description. We argue that relevant law articles play an important role in this task, and therefore propose an attention-based neural network method to jointly model the charge prediction task and the relevant article extraction task in a unified framework. The experimental results show that, besides providing legal basis, the relevant articles can also clearly improve the charge prediction results, and our full model can effectively predict appropriate charges for cases with different expression styles.

pdf bib
Learning with Noise: Enhance Distantly Supervised Relation Extraction with Dynamic Transition Matrix
Bingfeng Luo | Yansong Feng | Zheng Wang | Zhanxing Zhu | Songfang Huang | Rui Yan | Dongyan Zhao
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Distant supervision significantly reduces human efforts in building training data for many classification tasks. While promising, this technique often introduces noise to the generated training data, which can severely affect the model performance. In this paper, we take a deep look at the application of distant supervision in relation extraction. We show that the dynamic transition matrix can effectively characterize the noise in the training data built by distant supervision. The transition matrix can be effectively trained using a novel curriculum learning based method without any direct supervision about the noise. We thoroughly evaluate our approach under a wide range of extraction scenarios. Experimental results show that our approach consistently improves the extraction results and outperforms the state-of-the-art in various evaluation scenarios.

pdf bib
How to Make Context More Useful? An Empirical Study on Context-Aware Neural Conversational Models
Zhiliang Tian | Rui Yan | Lili Mou | Yiping Song | Yansong Feng | Dongyan Zhao
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Generative conversational systems are attracting increasing attention in natural language processing (NLP). Recently, researchers have noticed the importance of context information in dialog processing, and built various models to utilize context. However, there is no systematic comparison to analyze how to use context effectively. In this paper, we conduct an empirical study to compare various models and investigate the effect of context information in dialog systems. We also propose a variant that explicitly weights context vectors by context-query relevance, outperforming the other baselines.

2016

pdf bib
Hybrid Question Answering over Knowledge Base and Free Text
Kun Xu | Yansong Feng | Songfang Huang | Dongyan Zhao
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Recent trend in question answering (QA) systems focuses on using structured knowledge bases (KBs) to find answers. While these systems are able to provide more precise answers than information retrieval (IR) based QA systems, the natural incompleteness of KB inevitably limits the question scope that the system can answer. In this paper, we present a hybrid question answering (hybrid-QA) system which exploits both structured knowledge base and free text to answer a question. The main challenge is to recognize the meaning of a question using these two resources, i.e., structured KB and free text. To address this, we map relational phrases to KB predicates and textual relations simultaneously, and further develop an integer linear program (ILP) model to infer on these candidates and provide a globally optimal solution. Experiments on benchmark datasets show that our system can benefit from both structured KB and free text, outperforming the state-of-the-art systems.

pdf bib
Question Answering on Freebase via Relation Extraction and Textual Evidence
Kun Xu | Siva Reddy | Yansong Feng | Songfang Huang | Dongyan Zhao
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Semantic Relation Classification via Convolutional Neural Networks with Simple Negative Sampling
Kun Xu | Yansong Feng | Songfang Huang | Dongyan Zhao
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Semantic Interpretation of Superlative Expressions via Structured Knowledge Bases
Sheng Zhang | Yansong Feng | Songfang Huang | Kun Xu | Zhe Han | Dongyan Zhao
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

2014

pdf bib
Joint Inference for Knowledge Base Population
Liwei Chen | Yansong Feng | Jinghui Mo | Songfang Huang | Dongyan Zhao
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf bib
Encoding Relation Requirements for Relation Extraction via Joint Inference
Liwei Chen | Yansong Feng | Songfang Huang | Yong Qin | Dongyan Zhao
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2012

pdf bib
Towards Automatic Construction of Knowledge Bases from Chinese Online Resources
Liwei Chen | Yansong Feng | Yidong Chen | Lei Zou | Dongyan Zhao
Proceedings of ACL 2012 Student Research Workshop

pdf bib
Explore Person Specific Evidence in Web Person Name Disambiguation
Liwei Chen | Yansong Feng | Lei Zou | Dongyan Zhao
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

Search
Co-authors
Venues