2024
pdf
bib
Correct after Answer: Enhancing Multi-Span Question Answering with Post-Processing Method
Jiayi Lin
|
Chenyang Zhang
|
Haibo Tong
|
Dongyu Zhang
|
Qingqing Hong
|
Bingxuan Hou
|
Junli Wang
Findings of the Association for Computational Linguistics: EMNLP 2024
pdf
bib
abs
Take Its Essence, Discard Its Dross! Debiasing for Toxic Language Detection via Counterfactual Causal Effect
Junyu Lu
|
Bo Xu
|
Xiaokun Zhang
|
Kaiyuan Liu
|
Dongyu Zhang
|
Liang Yang
|
Hongfei Lin
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Researchers have attempted to mitigate lexical bias in toxic language detection (TLD). However, existing methods fail to disentangle the “useful” and “misleading” impact of lexical bias on model decisions. Therefore, they do not effectively exploit the positive effects of the bias and lead to a degradation in the detection performance of the debiased model. In this paper, we propose a Counterfactual Causal Debiasing Framework (CCDF) to mitigate lexical bias in TLD. It preserves the “useful impact” of lexical bias and eliminates the “misleading impact”. Specifically, we first represent the total effect of the original sentence and biased tokens on decisions from a causal view. We then conduct counterfactual inference to exclude the direct causal effect of lexical bias from the total effect. Empirical evaluations demonstrate that the debiased TLD model incorporating CCDF achieves state-of-the-art performance in both accuracy and fairness compared to competitive baselines applied on several vanilla models. The generalization capability of our model outperforms current debiased models for out-of-distribution data.
2023
pdf
bib
abs
基于动态常识推理与多维语义特征的幽默识别(Humor Recognition based on Dynamically Commonsense Reasoning and Multi-Dimensional Semantic Features)
Tuerxun Tunike
|
Hongfei Lin
|
Dongyu Zhang
|
Liang Yang
|
Changrong Min
|
吐尔逊 吐妮可
|
鸿飞 林
|
冬瑜 张
|
亮 杨
|
昶荣 闵
Proceedings of the 22nd Chinese National Conference on Computational Linguistics
“随着社交媒体的飞速发展,幽默识别任务在近年来受到研究者的广泛关注。该任务的目标是判断给定的文本是否表达幽默。现有的幽默识别方法主要是在幽默产生理论的支撑下,利用规则或者设计神经网络模型来提取多种幽默相关特征,比如不一致性特征、情感特征以及语音特征等等。这些方法一方面说明情感信息在建模幽默语义当中的重要地位,另一方面说明幽默语义的构建依赖多个维度的特征。然而,这些方法没有充分捕捉文本内部的情感特征,忽略了幽默文本中的隐式情感表达,影响幽默识别的准确性。为了解决这一问题,本文提出一种动态常识与多维语义特征驱动的幽默识别方法CMSOR。该方法首先利用外部常识信息从文本中动态推理出说话者的隐式情感表达,然后引入外部词典WordNet计算文本内部词级语义距离进而捕捉不一致性,同时计算文本的模糊性特征。最后,根据上述三个特征维度构建幽默语义,实现幽默识别。本文在三个公开数据集上进行实验,结果表明本文所提方法CMSOR相比于当前基准模型有明显提升。”
pdf
bib
abs
基于动态常识推理与多维语义特征的幽默识别(Humor Recognition based on Dynamically Commonsense Reasoning and Multi-Dimensional Semantic Features)
Tuerxun Tunike
|
Hongfei Lin
|
Dongyu Zhang
|
Liang Yang
|
Changrong Min
|
吐尔逊 吐妮可
|
鸿飞 林
|
冬瑜 张
|
亮 杨
|
昶荣 闵
Proceedings of the 22nd Chinese National Conference on Computational Linguistics
“随着社交媒体的飞速发展,幽默识别任务在近年来受到研究者的广泛关注。该任务的目标是判断给定的文本是否表达幽默。现有的幽默识别方法主要是在幽默产生理论的支撑下,利用规则或者设计神经网络模型来提取多种幽默相关特征,比如不一致性特征、情感特征以及语音特征等等。这些方法一方面说明情感信息在建模幽默语义当中的重要地位,另一方面说明幽默语义的构建依赖多个维度的特征。然而,这些方法没有充分捕捉文本内部的情感特征,忽略了幽默文本中的隐式情感表达,影响幽默识别的准确性。为了解决这一问题,本文提出一种动态常识与多维语义特征驱动的幽默识别方法CMSOR。该方法首先利用外部常识信息从文本中动态推理出说话者的隐式情感表达,然后引入外部词典WordNet计算文本内部词级语义距离进而捕捉不一致性,同时计算文本的模糊性特征。最后,根据上述三个特征维度构建幽默语义,实现幽默识别。本文在三个公开数据集上进行实验,结果表明本文所提方法CMSOR相比于当前基准模型有明显提升。”
pdf
bib
abs
MultiCMET: A Novel Chinese Benchmark for Understanding Multimodal Metaphor
Dongyu Zhang
|
Jingwei Yu
|
Senyuan Jin
|
Liang Yang
|
Hongfei Lin
Findings of the Association for Computational Linguistics: EMNLP 2023
Metaphor is a pervasive aspect of human communication, and its presence in multimodal forms has become more prominent with the progress of mass media. However, there is limited research on multimodal metaphor resources beyond the English language. Furthermore, the existing work in natural language processing does not address the exploration of categorizing the source and target domains in metaphors. This omission is significant considering the extensive research conducted in the fields of cognitive linguistics, which emphasizes that a profound understanding of metaphor relies on recognizing the differences and similarities between domain categories. We, therefore, introduce MultiCMET, a multimodal Chinese metaphor dataset, consisting of 13,820 text-image pairs of advertisements with manual annotations of the occurrence of metaphors, domain categories, and sentiments metaphors convey. We also constructed a domain lexicon that encompasses categorizations of metaphorical source domains and target domains and propose a Cascading Domain Knowledge Integration (CDKI) benchmark to detect metaphors by introducing domain-specific lexical features. Experimental results demonstrate the effectiveness of CDKI. The dataset and code are publicly available.
pdf
bib
abs
Poetry Generation Combining Poetry Theme Labels Representations
Yingyu Yan
|
Dongzhen Wen
|
Liang Yang
|
Dongyu Zhang
|
Hongfei Lin
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
Ancient Chinese poetry is the earliest literary genre that took shape in Chinese literature and has a dissemination effect, showing China’s profound cultural heritage. At the same time, the generation of ancient poetry is an important task in the field of digital humanities, which is of great significance to the inheritance of national culture and the education of ancient poetry. The current work in the field of poetry generation is mainly aimed at improving the fluency and structural accuracy of words and sentences, ignoring the theme unity of poetry generation results. In order to solve this problem, this paper proposes a graph neural network poetry theme representation model based on label embedding. On the basis of the network representation of poetry, the topic feature representation of poetry is constructed and learned from the granularity of words. Then, the features of the poetry theme representation model are combined with the autoregressive language model to construct a theme-oriented ancient Chinese poetry generation model TLPG (Poetry Generation with Theme Label). Through machine evaluation and evaluation by experts in related fields, the model proposed in this paper has significantly improved the topic consistency of poetry generation compared with existing work on the premise of ensuring the fluency and format accuracy of poetry.
2022
pdf
bib
abs
TWEET-FID: An Annotated Dataset for Multiple Foodborne Illness Detection Tasks
Ruofan Hu
|
Dongyu Zhang
|
Dandan Tao
|
Thomas Hartvigsen
|
Hao Feng
|
Elke Rundensteiner
Proceedings of the Thirteenth Language Resources and Evaluation Conference
Foodborne illness is a serious but preventable public health problem – with delays in detecting the associated outbreaks resulting in productivity loss, expensive recalls, public safety hazards, and even loss of life. While social media is a promising source for identifying unreported foodborne illnesses, there is a dearth of labeled datasets for developing effective outbreak detection models. To accelerate the development of machine learning-based models for foodborne outbreak detection, we thus present TWEET-FID (TWEET-Foodborne Illness Detection), the first publicly available annotated dataset for multiple foodborne illness incident detection tasks. TWEET-FID collected from Twitter is annotated with three facets: tweet class, entity type, and slot type, with labels produced by experts as well as by crowdsource workers. We introduce several domain tasks leveraging these three facets: text relevance classification (TRC), entity mention detection (EMD), and slot filling (SF). We describe the end-to-end methodology for dataset design, creation, and labeling for supporting model development for these tasks. A comprehensive set of results for these tasks leveraging state-of-the-art single-and multi-task deep learning methods on the TWEET-FID dataset are provided. This dataset opens opportunities for future research in foodborne outbreak detection.
2021
pdf
bib
abs
MultiMET: A Multimodal Dataset for Metaphor Understanding
Dongyu Zhang
|
Minghao Zhang
|
Heting Zhang
|
Liang Yang
|
Hongfei Lin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Metaphor involves not only a linguistic phenomenon, but also a cognitive phenomenon structuring human thought, which makes understanding it challenging. As a means of cognition, metaphor is rendered by more than texts alone, and multimodal information in which vision/audio content is integrated with the text can play an important role in expressing and understanding metaphor. However, previous metaphor processing and understanding has focused on texts, partly due to the unavailability of large-scale datasets with ground truth labels of multimodal metaphor. In this paper, we introduce MultiMET, a novel multimodal metaphor dataset to facilitate understanding metaphorical information from multimodal text and image. It contains 10,437 text-image pairs from a range of sources with multimodal annotations of the occurrence of metaphors, domain relations, sentiments metaphors convey, and author intents. MultiMET opens the door to automatic metaphor understanding by investigating multimodal cues and their interplay. Moreover, we propose a range of strong baselines and show the importance of combining multimodal cues for metaphor understanding. MultiMET will be released publicly for research.
pdf
bib
abs
基于HowNet的无监督汉语动词隐喻识别方法(Unsupervised Chinese Verb Metaphor Recognition Method Based on HowNet)
Minghao Zhang (张明昊)
|
Dongyu Zhang (张冬瑜)
|
Hongfei Lin (林鸿飞)
Proceedings of the 20th Chinese National Conference on Computational Linguistics
隐喻是人类思维和语言理解的核心问题。随着互联网发展和海量文本出现,利用自然语言处理技术对隐喻文本进行自动识别成为一种迫切的需求。但是目前在汉语隐喻识别研究中,由于语义资源有限,导致模型容易过拟合。此外,主流隐喻识别方法存在可解释性差的缺点。针对上述问题,本文构建了一个规模较大的汉语动词隐喻数据集,并且提出了一种基于HowNet的无监督汉语动词隐喻识别模型。实验结果表明,本文提出的模型能够有效地应用于动词隐喻识别任务,识别效果超过了对比的无监督模型;并且,与其它用于隐喻识别的深度学习模型相比,本文模型具有结构简单、参数少、可解释性强的优点。
2019
pdf
bib
abs
Telling the Whole Story: A Manually Annotated Chinese Dataset for the Analysis of Humor in Jokes
Dongyu Zhang
|
Heting Zhang
|
Xikai Liu
|
Hongfei Lin
|
Feng Xia
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Humor plays important role in human communication, which makes it important problem for natural language processing. Prior work on the analysis of humor focuses on whether text is humorous or not, or the degree of funniness, but this is insufficient to explain why it is funny. We therefore create a dataset on humor with 9,123 manually annotated jokes in Chinese. We propose a novel annotation scheme to give scenarios of how humor arises in text. Specifically, our annotations of linguistic humor not only contain the degree of funniness, like previous work, but they also contain key words that trigger humor as well as character relationship, scene, and humor categories. We report reasonable agreement between annota-tors. We also conduct an analysis and exploration of the dataset. To the best of our knowledge, we are the first to approach humor annotation for exploring the underlying mechanism of the use of humor, which may contribute to a significantly deeper analysis of humor. We also contribute with a scarce and valuable dataset, which we will release publicly.
2018
pdf
bib
abs
WECA: A WordNet-Encoded Collocation-Attention Network for Homographic Pun Recognition
Yufeng Diao
|
Hongfei Lin
|
Di Wu
|
Liang Yang
|
Kan Xu
|
Zhihao Yang
|
Jian Wang
|
Shaowu Zhang
|
Bo Xu
|
Dongyu Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
Homographic puns have a long history in human writing, widely used in written and spoken literature, which usually occur in a certain syntactic or stylistic structure. How to recognize homographic puns is an important research. However, homographic pun recognition does not solve very well in existing work. In this work, we first use WordNet to understand and expand word embedding for settling the polysemy of homographic puns, and then propose a WordNet-Encoded Collocation-Attention network model (WECA) which combined with the context weights for recognizing the puns. Our experiments on the SemEval2017 Task7 and Pun of the Day demonstrate that the proposed model is able to distinguish between homographic pun and non-homographic pun texts. We show the effectiveness of the model to present the capability of choosing qualitatively informative words. The results show that our model achieves the state-of-the-art performance on homographic puns recognition.
pdf
bib
abs
Construction of a Chinese Corpus for the Analysis of the Emotionality of Metaphorical Expressions
Dongyu Zhang
|
Hongfei Lin
|
Liang Yang
|
Shaowu Zhang
|
Bo Xu
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Metaphors are frequently used to convey emotions. However, there is little research on the construction of metaphor corpora annotated with emotion for the analysis of emotionality of metaphorical expressions. Furthermore, most studies focus on English, and few in other languages, particularly Sino-Tibetan languages such as Chinese, for emotion analysis from metaphorical texts, although there are likely to be many differences in emotional expressions of metaphorical usages across different languages. We therefore construct a significant new corpus on metaphor, with 5,605 manually annotated sentences in Chinese. We present an annotation scheme that contains annotations of linguistic metaphors, emotional categories (joy, anger, sadness, fear, love, disgust and surprise), and intensity. The annotation agreement analyses for multiple annotators are described. We also use the corpus to explore and analyze the emotionality of metaphors. To the best of our knowledge, this is the first relatively large metaphor corpus with an annotation of emotions in Chinese.