Duong Le


pdf bib
Does It Happen? Multi-hop Path Structures for Event Factuality Prediction with Graph Transformer Networks
Duong Le | Thien Huu Nguyen
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

The goal of Event Factuality Prediction (EFP) is to determine the factual degree of an event mention, representing how likely the event mention has happened in text. Current deep learning models has demonstrated the importance of syntactic and semantic structures of the sentences to identify important context words for EFP. However, the major problem with these EFP models is that they only encode the one-hop paths between the words (i.e., the direct connections) to form the sentence structures. In this work, we show that the multi-hop paths between the words are also necessary to compute the sentence structures for EFP. To this end, we introduce a novel deep learning model for EFP that explicitly considers multi-hop paths with both syntax-based and semantic-based edges between the words to obtain sentence structures for representation learning in EFP. We demonstrate the effectiveness of the proposed model via the extensive experiments in this work.

pdf bib
Fine-Grained Event Trigger Detection
Duong Le | Thien Huu Nguyen
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Most of the previous work on Event Detection (ED) has only considered the datasets with a small number of event types (i.e., up to 38 types). In this work, we present the first study on fine-grained ED (FED) where the evaluation dataset involves much more fine-grained event types (i.e., 449 types). We propose a novel method to transform the Semcor dataset for Word Sense Disambiguation into a large and high-quality dataset for FED. Extensive evaluation of the current ED methods is conducted to demonstrate the challenges of the generated datasets for FED, calling for more research effort in this area.