Dylan Lewis


2020

pdf bib
Neural Transduction for Multilingual Lexical Translation
Dylan Lewis | Winston Wu | Arya D. McCarthy | David Yarowsky
Proceedings of the 28th International Conference on Computational Linguistics

We present a method for completing multilingual translation dictionaries. Our probabilistic approach can synthesize new word forms, allowing it to operate in settings where correct translations have not been observed in text (cf. cross-lingual embeddings). In addition, we propose an approximate Maximum Mutual Information (MMI) decoding objective to further improve performance in both many-to-one and one-to-one word level translation tasks where we use either multiple input languages for a single target language or more typical single language pair translation. The model is trained in a many-to-many setting, where it can leverage information from related languages to predict words in each of its many target languages. We focus on 6 languages: French, Spanish, Italian, Portuguese, Romanian, and Turkish. When indirect multilingual information is available, ensembling with mixture-of-experts as well as incorporating related languages leads to a 27% relative improvement in whole-word accuracy of predictions over a single-source baseline. To seed the completion when multilingual data is unavailable, it is better to decode with an MMI objective.

pdf bib
The Johns Hopkins University Bible Corpus: 1600+ Tongues for Typological Exploration
Arya D. McCarthy | Rachel Wicks | Dylan Lewis | Aaron Mueller | Winston Wu | Oliver Adams | Garrett Nicolai | Matt Post | David Yarowsky
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present findings from the creation of a massively parallel corpus in over 1600 languages, the Johns Hopkins University Bible Corpus (JHUBC). The corpus consists of over 4000 unique translations of the Christian Bible and counting. Our data is derived from scraping several online resources and merging them with existing corpora, combining them under a common scheme that is verse-parallel across all translations. We detail our effort to scrape, clean, align, and utilize this ripe multilingual dataset. The corpus captures the great typological variety of the world’s languages. We catalog this by showing highly similar proportions of representation of Ethnologue’s typological features in our corpus. We also give an example application: projecting pronoun features like clusivity across alignments to richly annotate languages which do not mark the distinction.

pdf bib
An Analysis of Massively Multilingual Neural Machine Translation for Low-Resource Languages
Aaron Mueller | Garrett Nicolai | Arya D. McCarthy | Dylan Lewis | Winston Wu | David Yarowsky
Proceedings of the Twelfth Language Resources and Evaluation Conference

In this work, we explore massively multilingual low-resource neural machine translation. Using translations of the Bible (which have parallel structure across languages), we train models with up to 1,107 source languages. We create various multilingual corpora, varying the number and relatedness of source languages. Using these, we investigate the best ways to use this many-way aligned resource for multilingual machine translation. Our experiments employ a grammatically and phylogenetically diverse set of source languages during testing for more representative evaluations. We find that best practices in this domain are highly language-specific: adding more languages to a training set is often better, but too many harms performance—the best number depends on the source language. Furthermore, training on related languages can improve or degrade performance, depending on the language. As there is no one-size-fits-most answer, we find that it is critical to tailor one’s approach to the source language and its typology.

pdf bib
Fine-grained Morphosyntactic Analysis and Generation Tools for More Than One Thousand Languages
Garrett Nicolai | Dylan Lewis | Arya D. McCarthy | Aaron Mueller | Winston Wu | David Yarowsky
Proceedings of the Twelfth Language Resources and Evaluation Conference

Exploiting the broad translation of the Bible into the world’s languages, we train and distribute morphosyntactic tools for approximately one thousand languages, vastly outstripping previous distributions of tools devoted to the processing of inflectional morphology. Evaluation of the tools on a subset of available inflectional dictionaries demonstrates strong initial models, supplemented and improved through ensembling and dictionary-based reranking. Likewise, a novel type-to-token based evaluation metric allows us to confirm that models generalize well across rare and common forms alike