Daiki Matsuoka


2025

pdf bib
Implementing a Logical Inference System for Japanese Comparatives
Yosuke Mikami | Daiki Matsuoka | Hitomi Yanaka
Proceedings of the 5th Workshop on Natural Logic Meets Machine Learning (NALOMA)

Natural Language Inference (NLI) involving comparatives is challenging because it requires understanding quantities and comparative relations expressed by sentences. While some approaches leverage Large Language Models (LLMs), we focus on logic-based approaches grounded in compositional semantics, which are promising for robust handling of numerical and logical expressions. Previous studies along these lines have proposed logical inference systems for English comparatives. However, it has been pointed out that there are several morphological and semantic differences between Japanese and English comparatives. These differences make it difficult to apply such systems directly to Japanese comparatives. To address this gap, this study proposes ccg-jcomp, a logical inference system for Japanese comparatives based on compositional semantics. We evaluate the proposed system on a Japanese NLI dataset containing comparative expressions. We demonstrate the effectiveness of our system by comparing its accuracy with that of existing LLMs.

2024

pdf bib
Evaluating Structural Generalization in Neural Machine Translation
Ryoma Kumon | Daiki Matsuoka | Hitomi Yanaka
Findings of the Association for Computational Linguistics: ACL 2024

Compositional generalization refers to the ability to generalize to novel combinations of previously observed words and syntactic structures.Since it is regarded as a desired property of neural models, recent work has assessed compositional generalization in machine translation as well as semantic parsing.However, previous evaluations with machine translation have focused mostly on lexical generalization (i.e., generalization to unseen combinations of known words).Thus, it remains unclear to what extent models can translate sentences that require structural generalization (i.e., generalization to different sorts of syntactic structures).To address this question, we construct SGET, a machine translation dataset covering various types of compositional generalization with control of words and sentence structures.We evaluate neural machine translation models on SGET and show that they struggle more in structural generalization than in lexical generalization.We also find different performance trends in semantic parsing and machine translation, which indicates the importance of evaluations across various tasks.