Daixuan Cheng


2025

pdf bib
On Domain-Adaptive Post-Training for Multimodal Large Language Models
Daixuan Cheng | Shaohan Huang | Ziyu Zhu | Xintong Zhang | Xin Zhao | Zhongzhi Luan | Bo Dai | Zhenliang Zhang
Findings of the Association for Computational Linguistics: EMNLP 2025

Adapting general multimodal large language models (MLLMs) to specific domains, such as scientific and industrial fields, is highly significant in promoting their practical applications. This paper systematically investigates domain adaptation of MLLMs via post-training, focusing on data synthesis, training pipeline, and task evaluation. (1) **Data Synthesis**: Using only open-source models, we develop a generate-then-filter pipeline that curates diverse visual instruction tasks based on domain-specific image-caption pairs. The resulting data surpass the data synthesized by manual rules or strong closed-source models in enhancing domain-specific performance. (2) **Training Pipeline**: Unlike general MLLMs that typically adopt a two-stage training paradigm, we find that a single-stage approach is more effective for domain adaptation. (3) **Task Evaluation**: We conduct extensive experiments in high-impact domains such as biomedicine, food, and remote sensing, by post-training a variety of MLLMs and then evaluating MLLM performance on various domain-specific tasks. Finally, we fully open-source our models, code, and data to encourage future research in this area.

2024

pdf bib
Instruction Pre-Training: Language Models are Supervised Multitask Learners
Daixuan Cheng | Yuxian Gu | Shaohan Huang | Junyu Bi | Minlie Huang | Furu Wei
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Unsupervised multitask pre-training has been the critical method behind the recent success of language models (LMs). However, supervised multitask learning still holds significant promise, as scaling it in the post-training stage trends towards better generalization. In this paper, we explore supervised multitask pre-training by proposing Instruction Pre-training, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train LMs. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction response pairs covering 40+ task categories to verify the effectiveness of Instruction Pre-training. In pre-training from scratch, Instruction Pre-training not only consistently enhances pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, Instruction Pre-training enables Llama3-8B to be comparable to or even outperform Llama3-70B. Our model, code, and data are available at https://github.com/microsoft/LMOps.

pdf bib
MDR: Model-Specific Demonstration Retrieval at Inference Time for In-Context Learning
Huazheng Wang | Jinming Wu | Haifeng Sun | Zixuan Xia | Daixuan Cheng | Jingyu Wang | Qi Qi | Jianxin Liao
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Recently, retrieval-based in-context learning (ICL) methods for selecting demonstrations have been widely investigated. Existing methods train a dense retriever to retrieve the most appropriate demonstrations for a given test query, which improves ICL performance. However, we find that distinct LLMs exhibit different biases for “what is a good demonstration” since they possess differences in training data, model architectures and training methods. As a result, a demonstration suitable for one LLM may not be appropriate for others.Previous approaches ignore the model bias and fail to retrieve the most appropriate demonstrations for different inference LLMs, resulting in a degradation of ICL performance.To address this problem, we propose a simple yet effective metric to evaluate the appropriateness of demonstrations for a specific inference LLM. Furthermore, we introduce a Model-specific Demonstration Retrieval (MDR) method for ICL at inference time, which considers the biases of different LLMs. We test MDR on seen and unseen tasks with multi-scale inference LLMs, such as GPT-Neo-2.7B, LLaMA-7B and Vicuna-13B. Experiments on 23 datasets across 11 data domains highlight the remarkable effectiveness of MDR, showcasing improvements of up to 41.2% in comparison to methods that neglect model biases.

2023

pdf bib
UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation
Daixuan Cheng | Shaohan Huang | Junyu Bi | Yuefeng Zhan | Jianfeng Liu | Yujing Wang | Hao Sun | Furu Wei | Weiwei Deng | Qi Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) are popular for their impressive abilities, but the need for model-specific fine-tuning or task-specific prompt engineering can hinder their generalization. We propose UPRISE (Universal Prompt Retrieval for Improving zero-Shot Evaluation), which tunes a lightweight and versatile retriever that automatically retrieves prompts for a given zero-shot task input. Specifically, we demonstrate universality in a cross-task and cross-model scenario: the retriever is tuned on diverse tasks, but tested on unseen task types; we use a small frozen LLM, GPT-Neo-2.7B, for tuning the retriever, but test the retriever on different LLMs of much larger scales, such as BLOOM-7.1B, OPT-66B and GPT3-175B. Additionally, we show that UPRISE mitigates the hallucination problem in our experiments with ChatGPT, suggesting its potential to improve even the strongest LLMs. Our model and code are available at https://github.com/microsoft/LMOps.

2022

pdf bib
Snapshot-Guided Domain Adaptation for ELECTRA
Daixuan Cheng | Shaohan Huang | Jianfeng Liu | Yuefeng Zhan | Hao Sun | Furu Wei | Denvy Deng | Qi Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

Discriminative pre-trained language models, such as ELECTRA, have achieved promising performances in a variety of general tasks. However, these generic pre-trained models struggle to capture domain-specific knowledge of domain-related tasks. In this work, we propose a novel domain-adaptation method for ELECTRA, which can dynamically select domain-specific tokens and guide the discriminator to emphasize them, without introducing new training parameters. We show that by re-weighting the losses of domain-specific tokens, ELECTRA can be effectively adapted to different domains. The experimental results in both computer science and biomedical domains show that the proposed method can achieve state-of-the-art results on the domain-related tasks.