David Corney


2025

pdf bib
PledgeTracker: A System for Monitoring the Fulfilment of Pledges
Yulong Chen | Michael Sejr Schlichtkrull | Zhenyun Deng | David Corney | Nasim Asl | Joshua Salisbury | Andrew Dudfield | Andreas Vlachos
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Political pledges reflect candidates’ policy commitments, but tracking their fulfilment requires reasoning over incremental evidence distributed across multiple, dynamically updated sources. Existing methods simplify this task into a document classification task, overlooking its dynamic temporal and multi-document nature. To address this issue, we introduce PledgeTracker, a system that reformulates pledge verification into structured event timeline construction. PledgeTracker consists of three core components: (1) a multi-step evidence retrieval module; (2) a timeline construction module and; (3) a fulfilment filtering module, allowing the capture of the evolving nature of pledge fulfilment and producing interpretable and structured timelines. We evaluate PledgeTracker in collaboration with professional fact-checkers in real-world workflows, demonstrating its effectiveness in retrieving relevant evidence and reducing human verification effort.

2019

pdf bib
SemEval-2019 Task 4: Hyperpartisan News Detection
Johannes Kiesel | Maria Mestre | Rishabh Shukla | Emmanuel Vincent | Payam Adineh | David Corney | Benno Stein | Martin Potthast
Proceedings of the 13th International Workshop on Semantic Evaluation

Hyperpartisan news is news that takes an extreme left-wing or right-wing standpoint. If one is able to reliably compute this meta information, news articles may be automatically tagged, this way encouraging or discouraging readers to consume the text. It is an open question how successfully hyperpartisan news detection can be automated, and the goal of this SemEval task was to shed light on the state of the art. We developed new resources for this purpose, including a manually labeled dataset with 1,273 articles, and a second dataset with 754,000 articles, labeled via distant supervision. The interest of the research community in our task exceeded all our expectations: The datasets were downloaded about 1,000 times, 322 teams registered, of which 184 configured a virtual machine on our shared task cloud service TIRA, of which in turn 42 teams submitted a valid run. The best team achieved an accuracy of 0.822 on a balanced sample (yes : no hyperpartisan) drawn from the manually tagged corpus; an ensemble of the submitted systems increased the accuracy by 0.048.