Knowledge Graphs (KGs) are structured databases that capture real-world entities and their relationships. The task of entity retrieval from a KG aims at retrieving a ranked list of entities relevant to a given user query. While English-only entity retrieval has attracted considerable attention, user queries, as well as the information contained in the KG, may be represented in multiple—and possibly distinct—languages. Furthermore, KG content may vary between languages due to different information sources and points of view. Recent advances in language representation have enabled natural ways of bridging gaps between languages. In this paper, we therefore propose to utilise language models (LMs) and diverse entity representations to enable truly multilingual entity retrieval. We propose two approaches: (i) an array of monolingual retrievers and (ii) a single multilingual retriever, trained using queries and documents in multiple languages. We show that while our approach is on par with the significantly more complex state-of-the-art method for the English task, it can be successfully applied to virtually any language with a LM. Furthermore, it allows languages to benefit from one another, yielding significantly better performance, both for low- and high-resource languages.
Writers such as journalists often use automatic tools to find relevant content to include in their narratives. In this paper, we focus on supporting writers in the news domain to develop event-centric narratives. Given an incomplete narrative that specifies a main event and a context, we aim to retrieve news articles that discuss relevant events that would enable the continuation of the narrative. We formally define this task and propose a retrieval dataset construction procedure that relies on existing news articles to simulate incomplete narratives and relevant articles. Experiments on two datasets derived from this procedure show that state-of-the-art lexical and semantic rankers are not sufficient for this task. We show that combining those with a ranker that ranks articles by reverse chronological order outperforms those rankers alone. We also perform an in-depth quantitative and qualitative analysis of the results that sheds light on the characteristics of this task.
While state-of-the-art Dialogue State Tracking (DST) models show promising results, all of them rely on a traditional cross-entropy loss function during the training process, which may not be optimal for improving the joint goal accuracy. Although several approaches recently propose augmenting the training set by copying user utterances and replacing the real slot values with other possible or even similar values, they are not effective at improving the performance of existing DST models. To address these challenges, we propose a Turn-based Loss Function (TLF) that penalises the model if it inaccurately predicts a slot value at the early turns more so than in later turns in order to improve joint goal accuracy. We also propose a simple but effective Sequential Data Augmentation (SDA) algorithm to generate more complex user utterances and system responses to effectively train existing DST models. Experimental results on two standard DST benchmark collections demonstrate that our proposed TLF and SDA techniques significantly improve the effectiveness of the state-of-the-art DST model by approximately 7-8% relative reduction in error and achieves a new state-of-the-art joint goal accuracy with 59.50 and 54.90 on MultiWOZ2.1 and MultiWOZ2.2, respectively.
Methods and applications are inextricably linked in science, and in particular in the domain of text-as-data. In this paper, we examine one such text-as-data application, an established economic index that measures economic policy uncertainty from keyword occurrences in news. This index, which is shown to correlate with firm investment, employment, and excess market returns, has had substantive impact in both the private sector and academia. Yet, as we revisit and extend the original authors’ annotations and text measurements we find interesting text-as-data methodological research questions: (1) Are annotator disagreements a reflection of ambiguity in language? (2) Do alternative text measurements correlate with one another and with measures of external predictive validity? We find for this application (1) some annotator disagreements of economic policy uncertainty can be attributed to ambiguity in language, and (2) switching measurements from keyword-matching to supervised machine learning classifiers results in low correlation, a concerning implication for the validity of the index.
Little is known about the trustworthiness of predictions made by knowledge graph embedding (KGE) models. In this paper we take initial steps toward this direction by investigating the calibration of KGE models, or the extent to which they output confidence scores that reflect the expected correctness of predicted knowledge graph triples. We first conduct an evaluation under the standard closed-world assumption (CWA), in which predicted triples not already in the knowledge graph are considered false, and show that existing calibration techniques are effective for KGE under this common but narrow assumption. Next, we introduce the more realistic but challenging open-world assumption (OWA), in which unobserved predictions are not considered true or false until ground-truth labels are obtained. Here, we show that existing calibration techniques are much less effective under the OWA than the CWA, and provide explanations for this discrepancy. Finally, to motivate the utility of calibration for KGE from a practitioner’s perspective, we conduct a unique case study of human-AI collaboration, showing that calibrated predictions can improve human performance in a knowledge graph completion task.