Edoardo Barba


2023

pdf bib
LexicoMatic: Automatic Creation of Multilingual Lexical-Semantic Dictionaries
Federico Martelli | Luigi Procopio | Edoardo Barba | Roberto Navigli
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
DMLM: Descriptive Masked Language Modeling
Edoardo Barba | Niccolò Campolungo | Roberto Navigli
Findings of the Association for Computational Linguistics: ACL 2023

Over the last few years, Masked Language Modeling (MLM) pre-training has resulted in remarkable advancements in many Natural Language Understanding (NLU) tasks, which sparked an interest in researching alternatives and extensions to the MLM objective. In this paper, we tackle the absence of explicit semantic grounding in MLM and propose Descriptive Masked Language Modeling (DMLM), a knowledge-enhanced reading comprehension objective, where the model is required to predict the most likely word in a context, being provided with the word’s definition. For instance, given the sentence “I was going to the _”, if we provided as definition “financial institution”, the model would have to predict the word “bank”; if, instead, we provided “sandy seashore”, the model should predict “beach”. Our evaluation highlights the effectiveness of DMLM in comparison with standard MLM, showing improvements on a number of well-established NLU benchmarks, as well as other semantics-focused tasks, e.g., Semantic Role Labeling. Furthermore, we demonstrate how it is possible to take full advantage of DMLM to embed explicit semantics in downstream tasks, explore several properties of DMLM-based contextual representations and suggest a number of future directions to investigate.

pdf bib
Code-Switching with Word Senses for Pretraining in Neural Machine Translation
Vivek Iyer | Edoardo Barba | Alexandra Birch | Jeff Pan | Roberto Navigli
Findings of the Association for Computational Linguistics: EMNLP 2023

Lexical ambiguity is a significant and pervasive challenge in Neural Machine Translation (NMT), with many state-of-the-art (SOTA) NMT systems struggling to handle polysemous words (Campolungo et al., 2022). The same holds for the NMT pretraining paradigm of denoising synthetic “code-switched” text (Pan et al., 2021; Iyer et al., 2023), where word senses are ignored in the noising stage – leading to harmful sense biases in the pretraining data that are subsequently inherited by the resulting models. In this work, we introduce Word Sense Pretraining for Neural Machine Translation (WSP-NMT) - an end-to-end approach for pretraining multilingual NMT models leveraging word sense-specific information from Knowledge Bases. Our experiments show significant improvements in overall translation quality. Then, we show the robustness of our approach to scale to various challenging data and resource-scarce scenarios and, finally, report fine-grained accuracy improvements on the DiBiMT disambiguation benchmark. Our studies yield interesting and novel insights into the merits and challenges of integrating word sense information and structured knowledge in multilingual pretraining for NMT.

pdf bib
Entity Disambiguation with Entity Definitions
Luigi Procopio | Simone Conia | Edoardo Barba | Roberto Navigli
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Local models have recently attained astounding performances in Entity Disambiguation (ED), with generative and extractive formulations being the most promising research directions. However, previous works have so far limited their studies to using, as the textual representation of each candidate, only its Wikipedia title. Although certainly effective, this strategy presents a few critical issues, especially when titles are not sufficiently informative or distinguishable from one another. In this paper, we address this limitation and investigate the extent to which more expressive textual representations can mitigate it. We evaluate our approach thoroughly against standard benchmarks in ED and find extractive formulations to be particularly well-suited to such representations. We report a new state of the art on 2 out of the 6 benchmarks we consider and strongly improve the generalization capability over unseen patterns. We release our code, data and model checkpoints at https://github.com/SapienzaNLP/extend.

2022

pdf bib
A Tour of Explicit Multilingual Semantics: Word Sense Disambiguation, Semantic Role Labeling and Semantic Parsing
Roberto Navigli | Edoardo Barba | Simone Conia | Rexhina Blloshmi
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Tutorial Abstracts

The recent advent of modern pretrained language models has sparked a revolution in Natural Language Processing (NLP), especially in multilingual and cross-lingual applications. Today, such language models have become the de facto standard for providing rich input representations to neural systems, achieving unprecedented results in an increasing range of benchmarks. However, questions that often arise are: firstly, whether current language models are, indeed, able to capture explicit, symbolic meaning; secondly, if they are, to what extent; thirdly, and perhaps more importantly, whether current approaches are capable of scaling across languages. In this cutting-edge tutorial, we will review recent efforts that have aimed at shedding light on meaning in NLP, with a focus on three key open problems in lexical and sentence-level semantics: Word Sense Disambiguation, Semantic Role Labeling, and Semantic Parsing. After a brief introduction, we will spotlight how state-of-the-art models tackle these tasks in multiple languages, showing where they excel and where they fail. We hope that this tutorial will broaden the audience interested in multilingual semantics and inspire researchers to further advance the field.

pdf bib
ExtEnD: Extractive Entity Disambiguation
Edoardo Barba | Luigi Procopio | Roberto Navigli
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Local models for Entity Disambiguation (ED) have today become extremely powerful, in most part thanks to the advent of large pre-trained language models. However, despite their significant performance achievements, most of these approaches frame ED through classification formulations that have intrinsic limitations, both computationally and from a modeling perspective. In contrast with this trend, here we propose ExtEnD, a novel local formulation for ED where we frame this task as a text extraction problem, and present two Transformer-based architectures that implement it. Based on experiments in and out of domain, and training over two different data regimes, we find our approach surpasses all its competitors in terms of both data efficiency and raw performance. ExtEnD outperforms its alternatives by as few as 6 F1 points on the more constrained of the two data regimes and, when moving to the other higher-resourced regime, sets a new state of the art on 4 out of 4 benchmarks under consideration, with average improvements of 0.7 F1 points overall and 1.1 F1 points out of domain. In addition, to gain better insights from our results, we also perform a fine-grained evaluation of our performances on different classes of label frequency, along with an ablation study of our architectural choices and an error analysis. We release our code and models for research purposes at https://github.com/SapienzaNLP/extend.

pdf bib
Semantic Role Labeling Meets Definition Modeling: Using Natural Language to Describe Predicate-Argument Structures
Simone Conia | Edoardo Barba | Alessandro Scirè | Roberto Navigli
Findings of the Association for Computational Linguistics: EMNLP 2022

One of the common traits of past and present approaches for Semantic Role Labeling (SRL) is that they rely upon discrete labels drawn from a predefined linguistic inventory to classify predicate senses and their arguments. However, we argue this need not be the case. In this paper, we present an approach that leverages Definition Modeling to introduce a generalized formulation of SRL as the task of describing predicate-argument structures using natural language definitions instead of discrete labels. Our novel formulation takes a first step towards placing interpretability and flexibility foremost, and yet our experiments and analyses on PropBank-style and FrameNet-style, dependency-based and span-based SRL also demonstrate that a flexible model with an interpretable output does not necessarily come at the expense of performance. We release our software for research purposes at https://github.com/SapienzaNLP/dsrl.

2021

pdf bib
ESC: Redesigning WSD with Extractive Sense Comprehension
Edoardo Barba | Tommaso Pasini | Roberto Navigli
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Word Sense Disambiguation (WSD) is a historical NLP task aimed at linking words in contexts to discrete sense inventories and it is usually cast as a multi-label classification task. Recently, several neural approaches have employed sense definitions to better represent word meanings. Yet, these approaches do not observe the input sentence and the sense definition candidates all at once, thus potentially reducing the model performance and generalization power. We cope with this issue by reframing WSD as a span extraction problem — which we called Extractive Sense Comprehension (ESC) — and propose ESCHER, a transformer-based neural architecture for this new formulation. By means of an extensive array of experiments, we show that ESC unleashes the full potential of our model, leading it to outdo all of its competitors and to set a new state of the art on the English WSD task. In the few-shot scenario, ESCHER proves to exploit training data efficiently, attaining the same performance as its closest competitor while relying on almost three times fewer annotations. Furthermore, ESCHER can nimbly combine data annotated with senses from different lexical resources, achieving performances that were previously out of everyone’s reach. The model along with data is available at https://github.com/SapienzaNLP/esc.

pdf bib
ConSeC: Word Sense Disambiguation as Continuous Sense Comprehension
Edoardo Barba | Luigi Procopio | Roberto Navigli
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Supervised systems have nowadays become the standard recipe for Word Sense Disambiguation (WSD), with Transformer-based language models as their primary ingredient. However, while these systems have certainly attained unprecedented performances, virtually all of them operate under the constraining assumption that, given a context, each word can be disambiguated individually with no account of the other sense choices. To address this limitation and drop this assumption, we propose CONtinuous SEnse Comprehension (ConSeC), a novel approach to WSD: leveraging a recent re-framing of this task as a text extraction problem, we adapt it to our formulation and introduce a feedback loop strategy that allows the disambiguation of a target word to be conditioned not only on its context but also on the explicit senses assigned to nearby words. We evaluate ConSeC and examine how its components lead it to surpass all its competitors and set a new state of the art on English WSD. We also explore how ConSeC fares in the cross-lingual setting, focusing on 8 languages with various degrees of resource availability, and report significant improvements over prior systems. We release our code at https://github.com/SapienzaNLP/consec.