Edoardo Maria Ponti

Also published as: Edoardo Maria Ponti


2021

pdf bib
AM2iCo: Evaluating Word Meaning in Context across Low-Resource Languages with Adversarial Examples
Qianchu Liu | Edoardo Maria Ponti | Diana McCarthy | Ivan Vulić | Anna Korhonen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Capturing word meaning in context and distinguishing between correspondences and variations across languages is key to building successful multilingual and cross-lingual text representation models. However, existing multilingual evaluation datasets that evaluate lexical semantics “in-context” have various limitations. In particular, 1) their language coverage is restricted to high-resource languages and skewed in favor of only a few language families and areas, 2) a design that makes the task solvable via superficial cues, which results in artificially inflated (and sometimes super-human) performances of pretrained encoders, and 3) no support for cross-lingual evaluation. In order to address these gaps, we present AM2iCo (Adversarial and Multilingual Meaning in Context), a wide-coverage cross-lingual and multilingual evaluation set; it aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts for 14 language pairs. We conduct a series of experiments in a wide range of setups and demonstrate the challenging nature of AM2iCo. The results reveal that current SotA pretrained encoders substantially lag behind human performance, and the largest gaps are observed for low-resource languages and languages dissimilar to English.

pdf bib
Visually Grounded Reasoning across Languages and Cultures
Fangyu Liu | Emanuele Bugliarello | Edoardo Maria Ponti | Siva Reddy | Nigel Collier | Desmond Elliott
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The design of widespread vision-and-language datasets and pre-trained encoders directly adopts, or draws inspiration from, the concepts and images of ImageNet. While one can hardly overestimate how much this benchmark contributed to progress in computer vision, it is mostly derived from lexical databases and image queries in English, resulting in source material with a North American or Western European bias. Therefore, we devise a new protocol to construct an ImageNet-style hierarchy representative of more languages and cultures. In particular, we let the selection of both concepts and images be entirely driven by native speakers, rather than scraping them automatically. Specifically, we focus on a typologically diverse set of languages, namely, Indonesian, Mandarin Chinese, Swahili, Tamil, and Turkish. On top of the concepts and images obtained through this new protocol, we create a multilingual dataset for Multicultural Reasoning over Vision and Language (MaRVL) by eliciting statements from native speaker annotators about pairs of images. The task consists of discriminating whether each grounded statement is true or false. We establish a series of baselines using state-of-the-art models and find that their cross-lingual transfer performance lags dramatically behind supervised performance in English. These results invite us to reassess the robustness and accuracy of current state-of-the-art models beyond a narrow domain, but also open up new exciting challenges for the development of truly multilingual and multicultural systems.

pdf bib
Proceedings of the Third Workshop on Computational Typology and Multilingual NLP
Ekaterina Vylomova | Elizabeth Salesky | Sabrina Mielke | Gabriella Lapesa | Ritesh Kumar | Harald Hammarström | Ivan Vulić | Anna Korhonen | Roi Reichart | Edoardo Maria Ponti | Ryan Cotterell
Proceedings of the Third Workshop on Computational Typology and Multilingual NLP

pdf bib
SIGTYP 2021 Shared Task: Robust Spoken Language Identification
Elizabeth Salesky | Badr M. Abdullah | Sabrina Mielke | Elena Klyachko | Oleg Serikov | Edoardo Maria Ponti | Ritesh Kumar | Ryan Cotterell | Ekaterina Vylomova
Proceedings of the Third Workshop on Computational Typology and Multilingual NLP

While language identification is a fundamental speech and language processing task, for many languages and language families it remains a challenging task. For many low-resource and endangered languages this is in part due to resource availability: where larger datasets exist, they may be single-speaker or have different domains than desired application scenarios, demanding a need for domain and speaker-invariant language identification systems. This year’s shared task on robust spoken language identification sought to investigate just this scenario: systems were to be trained on largely single-speaker speech from one domain, but evaluated on data in other domains recorded from speakers under different recording circumstances, mimicking realistic low-resource scenarios. We see that domain and speaker mismatch proves very challenging for current methods which can perform above 95% accuracy in-domain, which domain adaptation can address to some degree, but that these conditions merit further investigation to make spoken language identification accessible in many scenarios.

pdf bib
LexFit: Lexical Fine-Tuning of Pretrained Language Models
Ivan Vulić | Edoardo Maria Ponti | Anna Korhonen | Goran Glavaš
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Transformer-based language models (LMs) pretrained on large text collections implicitly store a wealth of lexical semantic knowledge, but it is non-trivial to extract that knowledge effectively from their parameters. Inspired by prior work on semantic specialization of static word embedding (WE) models, we show that it is possible to expose and enrich lexical knowledge from the LMs, that is, to specialize them to serve as effective and universal “decontextualized” word encoders even when fed input words “in isolation” (i.e., without any context). Their transformation into such word encoders is achieved through a simple and efficient lexical fine-tuning procedure (termed LexFit) based on dual-encoder network structures. Further, we show that LexFit can yield effective word encoders even with limited lexical supervision and, via cross-lingual transfer, in different languages without any readily available external knowledge. Our evaluation over four established, structurally different lexical-level tasks in 8 languages indicates the superiority of LexFit-based WEs over standard static WEs (e.g., fastText) and WEs from vanilla LMs. Other extensive experiments and ablation studies further profile the LexFit framework, and indicate best practices and performance variations across LexFit variants, languages, and lexical tasks, also directly questioning the usefulness of traditional WE models in the era of large neural models.

pdf bib
Verb Knowledge Injection for Multilingual Event Processing
Olga Majewska | Ivan Vulić | Goran Glavaš | Edoardo Maria Ponti | Anna Korhonen
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Linguistic probing of pretrained Transformer-based language models (LMs) revealed that they encode a range of syntactic and semantic properties of a language. However, they are still prone to fall back on superficial cues and simple heuristics to solve downstream tasks, rather than leverage deeper linguistic information. In this paper, we target a specific facet of linguistic knowledge, the interplay between verb meaning and argument structure. We investigate whether injecting explicit information on verbs’ semantic-syntactic behaviour improves the performance of pretrained LMs in event extraction tasks, where accurate verb processing is paramount. Concretely, we impart the verb knowledge from curated lexical resources into dedicated adapter modules (verb adapters), allowing it to complement, in downstream tasks, the language knowledge obtained during LM-pretraining. We first demonstrate that injecting verb knowledge leads to performance gains in English event extraction. We then explore the utility of verb adapters for event extraction in other languages: we investigate 1) zero-shot language transfer with multilingual Transformers and 2) transfer via (noisy automatic) translation of English verb-based lexical knowledge. Our results show that the benefits of verb knowledge injection indeed extend to other languages, even when relying on noisily translated lexical knowledge.

pdf bib
Minimax and Neyman–Pearson Meta-Learning for Outlier Languages
Edoardo Maria Ponti | Rahul Aralikatte | Disha Shrivastava | Siva Reddy | Anders Søgaard
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
MAD-G: Multilingual Adapter Generation for Efficient Cross-Lingual Transfer
Alan Ansell | Edoardo Maria Ponti | Jonas Pfeiffer | Sebastian Ruder | Goran Glavaš | Ivan Vulić | Anna Korhonen
Findings of the Association for Computational Linguistics: EMNLP 2021

Adapter modules have emerged as a general parameter-efficient means to specialize a pretrained encoder to new domains. Massively multilingual transformers (MMTs) have particularly benefited from additional training of language-specific adapters. However, this approach is not viable for the vast majority of languages, due to limitations in their corpus size or compute budgets. In this work, we propose MAD-G (Multilingual ADapter Generation), which contextually generates language adapters from language representations based on typological features. In contrast to prior work, our time- and space-efficient MAD-G approach enables (1) sharing of linguistic knowledge across languages and (2) zero-shot inference by generating language adapters for unseen languages. We thoroughly evaluate MAD-G in zero-shot cross-lingual transfer on part-of-speech tagging, dependency parsing, and named entity recognition. While offering (1) improved fine-tuning efficiency (by a factor of around 50 in our experiments), (2) a smaller parameter budget, and (3) increased language coverage, MAD-G remains competitive with more expensive methods for language-specific adapter training across the board. Moreover, it offers substantial benefits for low-resource languages, particularly on the NER task in low-resource African languages. Finally, we demonstrate that MAD-G’s transfer performance can be further improved via: (i) multi-source training, i.e., by generating and combining adapters of multiple languages with available task-specific training data; and (ii) by further fine-tuning generated MAD-G adapters for languages with monolingual data.

2020

pdf bib
SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection
Ekaterina Vylomova | Jennifer White | Elizabeth Salesky | Sabrina J. Mielke | Shijie Wu | Edoardo Maria Ponti | Rowan Hall Maudslay | Ran Zmigrod | Josef Valvoda | Svetlana Toldova | Francis Tyers | Elena Klyachko | Ilya Yegorov | Natalia Krizhanovsky | Paula Czarnowska | Irene Nikkarinen | Andrew Krizhanovsky | Tiago Pimentel | Lucas Torroba Hennigen | Christo Kirov | Garrett Nicolai | Adina Williams | Antonios Anastasopoulos | Hilaria Cruz | Eleanor Chodroff | Ryan Cotterell | Miikka Silfverberg | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on morphological reinflection aims to investigate systems’ ability to generalize across typologically distinct languages, many of which are low resource. Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages. A total of 22 systems (19 neural) from 10 teams were submitted to the task. All four winning systems were neural (two monolingual transformers and two massively multilingual RNN-based models with gated attention). Most teams demonstrate utility of data hallucination and augmentation, ensembles, and multilingual training for low-resource languages. Non-neural learners and manually designed grammars showed competitive and even superior performance on some languages (such as Ingrian, Tajik, Tagalog, Zarma, Lingala), especially with very limited data. Some language families (Afro-Asiatic, Niger-Congo, Turkic) were relatively easy for most systems and achieved over 90% mean accuracy while others were more challenging.

pdf bib
Specializing Unsupervised Pretraining Models for Word-Level Semantic Similarity
Anne Lauscher | Ivan Vulić | Edoardo Maria Ponti | Anna Korhonen | Goran Glavaš
Proceedings of the 28th International Conference on Computational Linguistics

Unsupervised pretraining models have been shown to facilitate a wide range of downstream NLP applications. These models, however, retain some of the limitations of traditional static word embeddings. In particular, they encode only the distributional knowledge available in raw text corpora, incorporated through language modeling objectives. In this work, we complement such distributional knowledge with external lexical knowledge, that is, we integrate the discrete knowledge on word-level semantic similarity into pretraining. To this end, we generalize the standard BERT model to a multi-task learning setting where we couple BERT’s masked language modeling and next sentence prediction objectives with an auxiliary task of binary word relation classification. Our experiments suggest that our “Lexically Informed” BERT (LIBERT), specialized for the word-level semantic similarity, yields better performance than the lexically blind “vanilla” BERT on several language understanding tasks. Concretely, LIBERT outperforms BERT in 9 out of 10 tasks of the GLUE benchmark and is on a par with BERT in the remaining one. Moreover, we show consistent gains on 3 benchmarks for lexical simplification, a task where knowledge about word-level semantic similarity is paramount, as well as large gains on lexical reasoning probes.

pdf bib
Emergent Communication Pretraining for Few-Shot Machine Translation
Yaoyiran Li | Edoardo Maria Ponti | Ivan Vulić | Anna Korhonen
Proceedings of the 28th International Conference on Computational Linguistics

While state-of-the-art models that rely upon massively multilingual pretrained encoders achieve sample efficiency in downstream applications, they still require abundant amounts of unlabelled text. Nevertheless, most of the world’s languages lack such resources. Hence, we investigate a more radical form of unsupervised knowledge transfer in the absence of linguistic data. In particular, for the first time we pretrain neural networks via emergent communication from referential games. Our key assumption is that grounding communication on images—as a crude approximation of real-world environments—inductively biases the model towards learning natural languages. On the one hand, we show that this substantially benefits machine translation in few-shot settings. On the other hand, this also provides an extrinsic evaluation protocol to probe the properties of emergent languages ex vitro. Intuitively, the closer they are to natural languages, the higher the gains from pretraining on them should be. For instance, in this work we measure the influence of communication success and maximum sequence length on downstream performances. Finally, we introduce a customised adapter layer and annealing strategies for the regulariser of maximum-a-posteriori inference during fine-tuning. These turn out to be crucial to facilitate knowledge transfer and prevent catastrophic forgetting. Compared to a recurrent baseline, our method yields gains of 59.0% 147.6% in BLEU score with only 500 NMT training instances and 65.1% 196.7% with 1,000 NMT training instances across four language pairs. These proof-of-concept results reveal the potential of emergent communication pretraining for both natural language processing tasks in resource-poor settings and extrinsic evaluation of artificial languages.

pdf bib
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
Edoardo Maria Ponti | Goran Glavaš | Olga Majewska | Qianchu Liu | Ivan Vulić | Anna Korhonen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apurímac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.

pdf bib
Probing Pretrained Language Models for Lexical Semantics
Ivan Vulić | Edoardo Maria Ponti | Robert Litschko | Goran Glavaš | Anna Korhonen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The success of large pretrained language models (LMs) such as BERT and RoBERTa has sparked interest in probing their representations, in order to unveil what types of knowledge they implicitly capture. While prior research focused on morphosyntactic, semantic, and world knowledge, it remains unclear to which extent LMs also derive lexical type-level knowledge from words in context. In this work, we present a systematic empirical analysis across six typologically diverse languages and five different lexical tasks, addressing the following questions: 1) How do different lexical knowledge extraction strategies (monolingual versus multilingual source LM, out-of-context versus in-context encoding, inclusion of special tokens, and layer-wise averaging) impact performance? How consistent are the observed effects across tasks and languages? 2) Is lexical knowledge stored in few parameters, or is it scattered throughout the network? 3) How do these representations fare against traditional static word vectors in lexical tasks 4) Does the lexical information emerging from independently trained monolingual LMs display latent similarities? Our main results indicate patterns and best practices that hold universally, but also point to prominent variations across languages and tasks. Moreover, we validate the claim that lower Transformer layers carry more type-level lexical knowledge, but also show that this knowledge is distributed across multiple layers.

pdf bib
Multi-SimLex: A Large-Scale Evaluation of Multilingual and Crosslingual Lexical Semantic Similarity
Ivan Vulić | Simon Baker | Edoardo Maria Ponti | Ulla Petti | Ira Leviant | Kelly Wing | Olga Majewska | Eden Bar | Matt Malone | Thierry Poibeau | Roi Reichart | Anna Korhonen
Computational Linguistics, Volume 46, Issue 4 - December 2020

We introduce Multi-SimLex, a large-scale lexical resource and evaluation benchmark covering data sets for 12 typologically diverse languages, including major languages (e.g., Mandarin Chinese, Spanish, Russian) as well as less-resourced ones (e.g., Welsh, Kiswahili). Each language data set is annotated for the lexical relation of semantic similarity and contains 1,888 semantically aligned concept pairs, providing a representative coverage of word classes (nouns, verbs, adjectives, adverbs), frequency ranks, similarity intervals, lexical fields, and concreteness levels. Additionally, owing to the alignment of concepts across languages, we provide a suite of 66 crosslingual semantic similarity data sets. Because of its extensive size and language coverage, Multi-SimLex provides entirely novel opportunities for experimental evaluation and analysis. On its monolingual and crosslingual benchmarks, we evaluate and analyze a wide array of recent state-of-the-art monolingual and crosslingual representation models, including static and contextualized word embeddings (such as fastText, monolingual and multilingual BERT, XLM), externally informed lexical representations, as well as fully unsupervised and (weakly) supervised crosslingual word embeddings. We also present a step-by-step data set creation protocol for creating consistent, Multi-Simlex–style resources for additional languages. We make these contributions—the public release of Multi-SimLex data sets, their creation protocol, strong baseline results, and in-depth analyses which can be helpful in guiding future developments in multilingual lexical semantics and representation learning—available via a Web site that will encourage community effort in further expansion of Multi-Simlex to many more languages. Such a large-scale semantic resource could inspire significant further advances in NLP across languages.

pdf bib
Internal and external pressures on language emergence: least effort, object constancy and frequency
Diana Rodríguez Luna | Edoardo Maria Ponti | Dieuwke Hupkes | Elia Bruni
Findings of the Association for Computational Linguistics: EMNLP 2020

In previous work, artificial agents were shown to achieve almost perfect accuracy in referential games where they have to communicate to identify images. Nevertheless, the resulting communication protocols rarely display salient features of natural languages, such as compositionality. In this paper, we propose some realistic sources of pressure on communication that avert this outcome. More specifically, we formalise the principle of least effort through an auxiliary objective. Moreover, we explore several game variants, inspired by the principle of object constancy, in which we alter the frequency, position, and luminosity of the objects in the images. We perform an extensive analysis on their effect through compositionality metrics, diagnostic classifiers, and zero-shot evaluation. Our findings reveal that the proposed sources of pressure result in emerging languages with less redundancy, more focus on high-level conceptual information, and better abilities of generalisation. Overall, our contributions reduce the gap between emergent and natural languages.

pdf bib
SIGTYP 2020 Shared Task: Prediction of Typological Features
Johannes Bjerva | Elizabeth Salesky | Sabrina J. Mielke | Aditi Chaudhary | Giuseppe G. A. Celano | Edoardo Maria Ponti | Ekaterina Vylomova | Ryan Cotterell | Isabelle Augenstein
Proceedings of the Second Workshop on Computational Research in Linguistic Typology

Typological knowledge bases (KBs) such as WALS (Dryer and Haspelmath, 2013) contain information about linguistic properties of the world’s languages. They have been shown to be useful for downstream applications, including cross-lingual transfer learning and linguistic probing. A major drawback hampering broader adoption of typological KBs is that they are sparsely populated, in the sense that most languages only have annotations for some features, and skewed, in that few features have wide coverage. As typological features often correlate with one another, it is possible to predict them and thus automatically populate typological KBs, which is also the focus of this shared task. Overall, the task attracted 8 submissions from 5 teams, out of which the most successful methods make use of such feature correlations. However, our error analysis reveals that even the strongest submitted systems struggle with predicting feature values for languages where few features are known.

2019

pdf bib
Specializing Distributional Vectors of All Words for Lexical Entailment
Aishwarya Kamath | Jonas Pfeiffer | Edoardo Maria Ponti | Goran Glavaš | Ivan Vulić
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

Semantic specialization methods fine-tune distributional word vectors using lexical knowledge from external resources (e.g. WordNet) to accentuate a particular relation between words. However, such post-processing methods suffer from limited coverage as they affect only vectors of words seen in the external resources. We present the first post-processing method that specializes vectors of all vocabulary words – including those unseen in the resources – for the asymmetric relation of lexical entailment (LE) (i.e., hyponymy-hypernymy relation). Leveraging a partially LE-specialized distributional space, our POSTLE (i.e., post-specialization for LE) model learns an explicit global specialization function, allowing for specialization of vectors of unseen words, as well as word vectors from other languages via cross-lingual transfer. We capture the function as a deep feed-forward neural network: its objective re-scales vector norms to reflect the concept hierarchy while simultaneously attracting hyponymy-hypernymy pairs to better reflect semantic similarity. An extended model variant augments the basic architecture with an adversarial discriminator. We demonstrate the usefulness and versatility of POSTLE models with different input distributional spaces in different scenarios (monolingual LE and zero-shot cross-lingual LE transfer) and tasks (binary and graded LE). We report consistent gains over state-of-the-art LE-specialization methods, and successfully LE-specialize word vectors for languages without any external lexical knowledge.

pdf bib
Proceedings of TyP-NLP: The First Workshop on Typology for Polyglot NLP
Haim Dubossarsky | Arya D. McCarthy | Edoardo Maria Ponti | Ivan Vulić | Ekaterina Vylomova | Yevgeni Berzak | Ryan Cotterell | Manaal Faruqui | Anna Korhonen | Roi Reichart
Proceedings of TyP-NLP: The First Workshop on Typology for Polyglot NLP

pdf bib
Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing
Edoardo Maria Ponti | Helen O’Horan | Yevgeni Berzak | Ivan Vulić | Roi Reichart | Thierry Poibeau | Ekaterina Shutova | Anna Korhonen
Computational Linguistics, Volume 45, Issue 3 - September 2019

Linguistic typology aims to capture structural and semantic variation across the world’s languages. A large-scale typology could provide excellent guidance for multilingual Natural Language Processing (NLP), particularly for languages that suffer from the lack of human labeled resources. We present an extensive literature survey on the use of typological information in the development of NLP techniques. Our survey demonstrates that to date, the use of information in existing typological databases has resulted in consistent but modest improvements in system performance. We show that this is due to both intrinsic limitations of databases (in terms of coverage and feature granularity) and under-utilization of the typological features included in them. We advocate for a new approach that adapts the broad and discrete nature of typological categories to the contextual and continuous nature of machine learning algorithms used in contemporary NLP. In particular, we suggest that such an approach could be facilitated by recent developments in data-driven induction of typological knowledge.

pdf bib
Cross-lingual Semantic Specialization via Lexical Relation Induction
Edoardo Maria Ponti | Ivan Vulić | Goran Glavaš | Roi Reichart | Anna Korhonen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Semantic specialization integrates structured linguistic knowledge from external resources (such as lexical relations in WordNet) into pretrained distributional vectors in the form of constraints. However, this technique cannot be leveraged in many languages, because their structured external resources are typically incomplete or non-existent. To bridge this gap, we propose a novel method that transfers specialization from a resource-rich source language (English) to virtually any target language. Our specialization transfer comprises two crucial steps: 1) Inducing noisy constraints in the target language through automatic word translation; and 2) Filtering the noisy constraints via a state-of-the-art relation prediction model trained on the source language constraints. This allows us to specialize any set of distributional vectors in the target language with the refined constraints. We prove the effectiveness of our method through intrinsic word similarity evaluation in 8 languages, and with 3 downstream tasks in 5 languages: lexical simplification, dialog state tracking, and semantic textual similarity. The gains over the previous state-of-art specialization methods are substantial and consistent across languages. Our results also suggest that the transfer method is effective even for lexically distant source-target language pairs. Finally, as a by-product, our method produces lists of WordNet-style lexical relations in resource-poor languages.

pdf bib
Towards Zero-shot Language Modeling
Edoardo Maria Ponti | Ivan Vulić | Ryan Cotterell | Roi Reichart | Anna Korhonen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Can we construct a neural language model which is inductively biased towards learning human language? Motivated by this question, we aim at constructing an informative prior for held-out languages on the task of character-level, open-vocabulary language modelling. We obtain this prior as the posterior over network weights conditioned on the data from a sample of training languages, which is approximated through Laplace’s method. Based on a large and diverse sample of languages, the use of our prior outperforms baseline models with an uninformative prior in both zero-shot and few-shot settings, showing that the prior is imbued with universal linguistic knowledge. Moreover, we harness broad language-specific information available for most languages of the world, i.e., features from typological databases, as distant supervision for held-out languages. We explore several language modelling conditioning techniques, including concatenation and meta-networks for parameter generation. They appear beneficial in the few-shot setting, but ineffective in the zero-shot setting. Since the paucity of even plain digital text affects the majority of the world’s languages, we hope that these insights will broaden the scope of applications for language technology.

bib
Semantic Specialization of Distributional Word Vectors
Goran Glavaś | Edoardo Maria Ponti | Ivan Vulić
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts

Distributional word vectors have become an indispensable component of most state-of-art NLP models. As a major artefact of the underlying distributional hypothesis, distributional word vector spaces conflate various paradigmatic and syntagmatic lexico-semantic relations. For example, relations such as synonymy/similarity (e.g., car-automobile) or lexical entailment (e.g., car-vehicle) often cannot be distinguished from antonymy (e.g., black-white), meronymy (e.g., car-wheel) or broader thematic relatedness (e.g., car-driver) based on the distances in the distributional vector space. This inherent property of distributional spaces often harms performance in downstream applications, since different lexico-semantic relations support different classes of NLP applications. For instance, Semantic Similarity provides guidance for Paraphrasing, Dialogue State Tracking, and Text Simplification, Lexical Entailment supports Natural Language Inference and Taxonomy Induction, whereas broader thematic relatedness yields gains for Named Entity Recognition, Parsing, and Text Classification and Retrieval.A plethora of methods have been proposed to emphasize specific lexico-semantic relations in a reshaped (i.e., specialized) vector space. A common solution is to move beyond purely unsupervised word representation learning and include external lexico-semantic knowledge, in a process commonly referred to as semantic specialization. In this tutorial, we provide a thorough overview of specialization methods, covering: 1) joint specialization methods, which augment distributional learning objectives with external linguistic constraints, 2) post-processing retrofitting models, which fine-tune pre-trained distributional vectors to better reflect external linguistic constraints, and 3) the most recently proposed post-specialization methods that generalize the perturbations of the post-processing methods to the whole distributional space. In addition to providing a comprehensive overview of specialization methods, we will introduce the most recent developments, such as (among others): handling asymmetric relations (e.g., hypernymy-hyponymy) in Euclidean and hyperbolic spaces by accounting for vector magnitude as well as for vector distance; cross-lingual transfer of semantic specialization for languages without external lexico-semantic resources; downstream effects of specializing distributional vector spaces; injecting external knowledge into unsupervised pretraining architectures such as ELMo or BERT.

2018

pdf bib
Isomorphic Transfer of Syntactic Structures in Cross-Lingual NLP
Edoardo Maria Ponti | Roi Reichart | Anna Korhonen | Ivan Vulić
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The transfer or share of knowledge between languages is a potential solution to resource scarcity in NLP. However, the effectiveness of cross-lingual transfer can be challenged by variation in syntactic structures. Frameworks such as Universal Dependencies (UD) are designed to be cross-lingually consistent, but even in carefully designed resources trees representing equivalent sentences may not always overlap. In this paper, we measure cross-lingual syntactic variation, or anisomorphism, in the UD treebank collection, considering both morphological and structural properties. We show that reducing the level of anisomorphism yields consistent gains in cross-lingual transfer tasks. We introduce a source language selection procedure that facilitates effective cross-lingual parser transfer, and propose a typologically driven method for syntactic tree processing which reduces anisomorphism. Our results show the effectiveness of this method for both machine translation and cross-lingual sentence similarity, demonstrating the importance of syntactic structure compatibility for boosting cross-lingual transfer in NLP.

pdf bib
Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization
Edoardo Maria Ponti | Ivan Vulić | Goran Glavaš | Nikola Mrkšić | Anna Korhonen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Semantic specialization is a process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with a adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.

pdf bib
On the Relation between Linguistic Typology and (Limitations of) Multilingual Language Modeling
Daniela Gerz | Ivan Vulić | Edoardo Maria Ponti | Roi Reichart | Anna Korhonen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

A key challenge in cross-lingual NLP is developing general language-independent architectures that are equally applicable to any language. However, this ambition is largely hampered by the variation in structural and semantic properties, i.e. the typological profiles of the world’s languages. In this work, we analyse the implications of this variation on the language modeling (LM) task. We present a large-scale study of state-of-the art n-gram based and neural language models on 50 typologically diverse languages covering a wide variety of morphological systems. Operating in the full vocabulary LM setup focused on word-level prediction, we demonstrate that a coarse typology of morphological systems is predictive of absolute LM performance. Moreover, fine-grained typological features such as exponence, flexivity, fusion, and inflectional synthesis are borne out to be responsible for the proliferation of low-frequency phenomena which are organically difficult to model by statistical architectures, or for the meaning ambiguity of character n-grams. Our study strongly suggests that these features have to be taken into consideration during the construction of next-level language-agnostic LM architectures, capable of handling morphologically complex languages such as Tamil or Korean.

2017

pdf bib
Event-Related Features in Feedforward Neural Networks Contribute to Identifying Causal Relations in Discourse
Edoardo Maria Ponti | Anna Korhonen
Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics

Causal relations play a key role in information extraction and reasoning. Most of the times, their expression is ambiguous or implicit, i.e. without signals in the text. This makes their identification challenging. We aim to improve their identification by implementing a Feedforward Neural Network with a novel set of features for this task. In particular, these are based on the position of event mentions and the semantics of events and participants. The resulting classifier outperforms strong baselines on two datasets (the Penn Discourse Treebank and the CSTNews corpus) annotated with different schemes and containing examples in two languages, English and Portuguese. This result demonstrates the importance of events for identifying discourse relations.

pdf bib
Decoding Sentiment from Distributed Representations of Sentences
Edoardo Maria Ponti | Ivan Vulić | Anna Korhonen
Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)

Distributed representations of sentences have been developed recently to represent their meaning as real-valued vectors. However, it is not clear how much information such representations retain about the polarity of sentences. To study this question, we decode sentiment from unsupervised sentence representations learned with different architectures (sensitive to the order of words, the order of sentences, or none) in 9 typologically diverse languages. Sentiment results from the (recursive) composition of lexical items and grammatical strategies such as negation and concession. The results are manifold: we show that there is no ‘one-size-fits-all’ representation architecture outperforming the others across the board. Rather, the top-ranking architectures depend on the language at hand. Moreover, we find that in several cases the additive composition model based on skip-gram word vectors may surpass supervised state-of-art architectures such as bi-directional LSTMs. Finally, we provide a possible explanation of the observed variation based on the type of negative constructions in each language.

2016

pdf bib
Differentia compositionem facit. A Slower-Paced and Reliable Parser for Latin
Edoardo Maria Ponti | Marco Passarotti
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

The Index Thomisticus Treebank is the largest available treebank for Latin; it contains Medieval Latin texts by Thomas Aquinas. After experimenting on its data with a number of dependency parsers based on different supervised machine learning techniques, we found that DeSR with a multilayer perceptron algorithm, a right-to-left transition, and a tailor-made feature model is the parser providing the highest accuracy rates. We improved the results further by using a technique that combines the output parses of DeSR with those provided by other parsers, outperforming the previous state of the art in parsing the Index Thomisticus Treebank. The key idea behind such improvement is to ensure a sufficient diversity and accuracy of the outputs to be combined; for this reason, we performed an in-depth evaluation of the results provided by the different parsers that we combined. Finally, we assessed that, although the general architecture of the parser is portable to Classical Latin, yet the model trained on Medieval Latin is inadequate for such purpose.