Edoardo Ponti


2024

pdf bib
Probing the Emergence of Cross-lingual Alignment during LLM Training
Hetong Wang | Pasquale Minervini | Edoardo Ponti
Findings of the Association for Computational Linguistics: ACL 2024

Multilingual Large Language Models (LLMs) achieve remarkable levels of zero-shot cross-lingual transfer performance. We speculate that this is predicated on their ability to align languages without explicit supervision from parallel sentences. While representations of translationally equivalent sentences in different languages are known to be similar after convergence, however, it remains unclear how such cross-lingual alignment emerges during pre-training of LLMs. Our study leverages intrinsic probing techniques, which identify which subsets of neurons encode linguistic features, to correlate the degree of cross-lingual neuron overlap with the zero-shot cross-lingual transfer performance for a given model. In particular, we rely on checkpoints of BLOOM, a multilingual autoregressive LLM, across different training steps and model scales. We observe a high correlation between neuron overlap and downstream performance, which supports our hypothesis on the conditions leading to effective cross-lingual transfer. Interestingly, we also detect a degradation of both implicit alignment and multilingual abilities in certain phases of the pre-training process, providing new insights into the multilingual pretraining dynamics.

pdf bib
Are Large Language Model Temporally Grounded?
Yifu Qiu | Zheng Zhao | Yftah Ziser | Anna Korhonen | Edoardo Ponti | Shay Cohen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Are Large Language Models (LLMs) temporally grounded? Since LLMs cannot perceive and interact with the environment, it is impossible to answer this question directly. Instead, we provide LLMs with textual narratives and probe them with respect to their common-sense knowledge of the structure and duration of events, their ability to order events along a timeline, and self-consistency within their temporal model (e.g., temporal relations such as after and before are mutually exclusive for any pair of events). We evaluate state-of-the-art LLMs (such as LLaMA 2 and GPT-4) on three tasks reflecting these abilities. Generally, we find that LLMs lag significantly behind both human performance as well as small-scale, specialised LMs. In-context learning, instruction tuning, and chain-of-thought prompting reduce this gap only to a limited degree. Crucially, LLMs struggle the most with self-consistency, displaying incoherent behaviour in at least 27.23% of their predictions. Contrary to expectations, we also find that scaling the model size does not guarantee positive gains in performance. To explain these results, we study the sources from which LLMs may gather temporal information: we find that sentence ordering in unlabelled texts, available during pre-training, is only weakly correlated with event ordering. Moreover, public instruction tuning mixtures contain few temporal tasks. Hence, we conclude that current LLMs lack a consistent temporal model of textual narratives.

pdf bib
Elastic Weight Removal for Faithful and Abstractive Dialogue Generation
Nico Daheim | Nouha Dziri | Mrinmaya Sachan | Iryna Gurevych | Edoardo Ponti
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Generating factual responses is a crucial requirement for dialogue systems. To promotemore factual responses, a common strategyis to ground their responses in relevant documents that inform response generation. However, common dialogue models still often hallucinate information that was not containedin these documents and is therefore unfaithful. In this work, we propose to alleviate suchhallucinations by ‘subtracting’ the parametersof a model trained to hallucinate from a dialogue response generation model in order to‘negate’ the contribution of such hallucinatedexamples from it. Extensive automatic and human evaluation shows favourable results whencompared to state-of-the-art methods that combine the distributions of multiple models, suchas DExperts (Liu et al., 2021), and others thatchange the training procedure, such as Quark(Lu et al., 2022a). Finally, we show how wecan not only reduce hallucinations but also discourage extractive responses, which are oftena consequence of reducing hallucinations byencouraging copy-pasting of document spans.We publicly release our code for reproducibilityand facilitating further research.

2023

pdf bib
Unifying Cross-Lingual Transfer across Scenarios of Resource Scarcity
Alan Ansell | Marinela Parović | Ivan Vulić | Anna Korhonen | Edoardo Ponti
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The scarcity of data in many of the world’s languages necessitates the transfer of knowledge from other, resource-rich languages. However, the level of scarcity varies significantly across multiple dimensions, including: i) the amount of task-specific data available in the source and target languages; ii) the amount of monolingual and parallel data available for both languages; and iii) the extent to which they are supported by pretrained multilingual and translation models. Prior work has largely treated these dimensions and the various techniques for dealing with them separately; in this paper, we offer a more integrated view by exploring how to deploy the arsenal of cross-lingual transfer tools across a range of scenarios, especially the most challenging, low-resource ones. To this end, we run experiments on the AmericasNLI and NusaX benchmarks over 20 languages, simulating a range of few-shot settings. The best configuration in our experiments employed parameter-efficient language and task adaptation of massively multilingual Transformers, trained simultaneously on source language data and both machine-translated and natural data for multiple target languages. In addition, we show that pre-trained translation models can be easily adapted to unseen languages, thus extending the range of our hybrid technique and translation-based transfer more broadly. Beyond new insights into the mechanisms of cross-lingual transfer, we hope our work will provide practitioners with a toolbox to integrate multiple techniques for different real-world scenarios. Our code is available at https://github.com/parovicm/unified-xlt.

pdf bib
Detecting and Mitigating Hallucinations in Multilingual Summarisation
Yifu Qiu | Yftah Ziser | Anna Korhonen | Edoardo Ponti | Shay Cohen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Hallucinations pose a significant challenge to the reliability of neural models for abstractive summarisation. While automatically generated summaries may be fluent, they often lack faithfulness to the original document. This issue becomes even more pronounced in low-resource languages, where summarisation requires cross-lingual transfer. With the existing faithful metrics focusing on English, even measuring the extent of this phenomenon in cross-lingual settings is hard. To address this, we first develop a novel metric, mFACT, evaluating the faithfulness of non-English summaries, leveraging translation-based transfer from multiple English faithfulness metrics. Through extensive experiments in multiple languages, we demonstrate that mFACT is best suited to detect hallucinations compared to alternative metrics. With mFACT, we assess a broad range of multilingual large language models, and find that they all tend to hallucinate often in languages different from English. We then propose a simple but effective method to reduce hallucinations in cross-lingual transfer, which weighs the loss of each training example by its faithfulness score. This method drastically increases both performance and faithfulness according to both automatic and human evaluation when compared to strong baselines for cross-lingual transfer such as MAD-X. Our code and dataset are available at https://github.com/yfqiu-nlp/mfact-summ.

2022

pdf bib
Same Neurons, Different Languages: Probing Morphosyntax in Multilingual Pre-trained Models
Karolina Stanczak | Edoardo Ponti | Lucas Torroba Hennigen | Ryan Cotterell | Isabelle Augenstein
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The success of multilingual pre-trained models is underpinned by their ability to learn representations shared by multiple languages even in absence of any explicit supervision. However, it remains unclear how these models learn to generalise across languages. In this work, we conjecture that multilingual pre-trained models can derive language-universal abstractions about grammar. In particular, we investigate whether morphosyntactic information is encoded in the same subset of neurons in different languages. We conduct the first large-scale empirical study over 43 languages and 14 morphosyntactic categories with a state-of-the-art neuron-level probe. Our findings show that the cross-lingual overlap between neurons is significant, but its extent may vary across categories and depends on language proximity and pre-training data size.

pdf bib
Composable Sparse Fine-Tuning for Cross-Lingual Transfer
Alan Ansell | Edoardo Ponti | Anna Korhonen | Ivan Vulić
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Fine-tuning the entire set of parameters of a large pretrained model has become the mainstream approach for transfer learning. To increase its efficiency and prevent catastrophic forgetting and interference, techniques like adapters and sparse fine-tuning have been developed. Adapters are modular, as they can be combined to adapt a model towards different facets of knowledge (e.g., dedicated language and/or task adapters). Sparse fine-tuning is expressive, as it controls the behavior of all model components. In this work, we introduce a new fine-tuning method with both these desirable properties. In particular, we learn sparse, real-valued masks based on a simple variant of the Lottery Ticket Hypothesis. Task-specific masks are obtained from annotated data in a source language, and language-specific masks from masked language modeling in a target language. Both these masks can then be composed with the pretrained model. Unlike adapter-based fine-tuning, this method neither increases the number of parameters at inference time nor alters the original model architecture. Most importantly, it outperforms adapters in zero-shot cross-lingual transfer by a large margin in a series of multilingual benchmarks, including Universal Dependencies, MasakhaNER, and AmericasNLI. Based on an in-depth analysis, we additionally find that sparsity is crucial to prevent both 1) interference between the fine-tunings to be composed and 2) overfitting. We release the code and models at https://github.com/cambridgeltl/composable-sft.

pdf bib
Image Retrieval from Contextual Descriptions
Benno Krojer | Vaibhav Adlakha | Vibhav Vineet | Yash Goyal | Edoardo Ponti | Siva Reddy
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The ability to integrate context, including perceptual and temporal cues, plays a pivotal role in grounding the meaning of a linguistic utterance. In order to measure to what extent current vision-and-language models master this ability, we devise a new multimodal challenge, Image Retrieval from Contextual Descriptions (ImageCoDe). In particular, models are tasked with retrieving the correct image from a set of 10 minimally contrastive candidates based on a contextual description. As such, each description contains only the details that help distinguish between images. Because of this, descriptions tend to be complex in terms of syntax and discourse and require drawing pragmatic inferences. Images are sourced from both static pictures and video frames. We benchmark several state-of-the-art models, including both cross-encoders such as ViLBERT and bi-encoders such as CLIP, on ImageCoDe.Our results reveal that these models dramatically lag behind human performance: the best variant achieves an accuracy of 20.9 on video frames and 59.4 on static pictures, compared with 90.8 in humans. Furthermore, we experiment with new model variants that are better equipped to incorporate visual and temporal context into their representations, which achieve modest gains. Our hope is that ImageCoDE will foster progress in grounded language understanding by encouraging models to focus on fine-grained visual differences.

pdf bib
Natural Language Processing for Multilingual Task-Oriented Dialogue
Evgeniia Razumovskaia | Goran Glavaš | Olga Majewska | Edoardo Ponti | Ivan Vulić
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

Recent advances in deep learning have also enabled fast progress in the research of task-oriented dialogue (ToD) systems. However, the majority of ToD systems are developed for English and merely a handful of other widely spoken languages, e.g., Chinese and German. This hugely limits the global reach and, consequently, transformative socioeconomic potential of such systems. In this tutorial, we will thus discuss and demonstrate the importance of (building) multilingual ToD systems, and then provide a systematic overview of current research gaps, challenges and initiatives related to multilingual ToD systems, with a particular focus on their connections to current research and challenges in multilingual and low-resource NLP. The tutorial will aim to provide answers or shed new light to the following questions: a) Why are multilingual dialogue systems so hard to build: what makes multilinguality for dialogue more challenging than for other NLP applications and tasks? b) What are the best existing methods and datasets for multilingual and cross-lingual (task-oriented) dialog systems? How are (multilingual) ToD systems usually evaluated? c) What are the promising future directions for multilingual ToD research: where can one draw inspiration from related NLP areas and tasks?

pdf bib
Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP
Ekaterina Vylomova | Edoardo Ponti | Ryan Cotterell
Proceedings of the 4th Workshop on Research in Computational Linguistic Typology and Multilingual NLP

2018

pdf bib
Language Modeling for Morphologically Rich Languages: Character-Aware Modeling for Word-Level Prediction
Daniela Gerz | Ivan Vulić | Edoardo Ponti | Jason Naradowsky | Roi Reichart | Anna Korhonen
Transactions of the Association for Computational Linguistics, Volume 6

Neural architectures are prominent in the construction of language models (LMs). However, word-level prediction is typically agnostic of subword-level information (characters and character sequences) and operates over a closed vocabulary, consisting of a limited word set. Indeed, while subword-aware models boost performance across a variety of NLP tasks, previous work did not evaluate the ability of these models to assist next-word prediction in language modeling tasks. Such subword-level informed models should be particularly effective for morphologically-rich languages (MRLs) that exhibit high type-to-token ratios. In this work, we present a large-scale LM study on 50 typologically diverse languages covering a wide variety of morphological systems, and offer new LM benchmarks to the community, while considering subword-level information. The main technical contribution of our work is a novel method for injecting subword-level information into semantic word vectors, integrated into the neural language modeling training, to facilitate word-level prediction. We conduct experiments in the LM setting where the number of infrequent words is large, and demonstrate strong perplexity gains across our 50 languages, especially for morphologically-rich languages. Our code and data sets are publicly available.