Scientific information extraction (SciIE) is critical for converting unstructured knowledge from scholarly articles into structured data (entities and relations). Several datasets have been proposed for training and validating SciIE models. However, due to the high complexity and cost of annotating scientific texts, those datasets restrict their annotations to specific parts of paper, such as abstracts, resulting in the loss of diverse entity mentions and relations in context. In this paper, we release a new entity and relation extraction dataset for entities related to datasets, methods, and tasks in scientific articles. Our dataset contains 106 manually annotated full-text scientific publications with over 24k entities and 12k relations. To capture the intricate use and interactions among entities in full texts, our dataset contains a fine-grained tag set for relations. Additionally, we provide an out-of-distribution test set to offer a more realistic evaluation. We conduct comprehensive experiments, including state-of-the-art supervised models and our proposed LLM-based baselines, and highlight the challenges presented by our dataset, encouraging the development of innovative models to further the field of SciIE.
Individuals engaging in online communication frequently express personal opinions with informal styles (e.g., memes and emojis). While Language Models (LMs) with informal communications have been widely discussed, a unique and emphatic style, the Repetitive Lengthening Form (RLF), has been overlooked for years. In this paper, we explore answers to two research questions: 1) Is RLF important for SA? 2) Can LMs understand RLF? Inspired by previous linguistic research, we curate **Lengthening**, the first multi-domain dataset with 850k samples focused on RLF for sentiment analysis. Moreover, we introduce **Explnstruct**, a two-stage Explainable Instruction Tuning framework aimed at improving both the performance and explainability of LLMs for RLF. We further propose a novel unified approach to quantify LMs’ understanding of informal expressions. We show that RLF sentences are expressive expressions and can serve as signatures of document-level sentiment. Additionally, RLF has potential value for online content analysis. Our comprehensive results show that fine-tuned Pre-trained Language Models (PLMs) can surpass zero-shot GPT-4 in performance but not in explanation for RLF. Finally, we show ExpInstruct can improve the open-sourced LLMs to match zero-shot GPT-4 in performance and explainability for RLF with limited samples. Code and sample data are available at https://github.com/Tom-Owl/OverlookedRLF
We present SciDMT, an enhanced and expanded corpus for scientific mention detection, offering a significant advancement over existing related resources. SciDMT contains annotated scientific documents for datasets (D), methods (M), and tasks (T). The corpus consists of two components: 1) the SciDMT main corpus, which includes 48 thousand scientific articles with over 1.8 million weakly annotated mention annotations in the format of in-text span, and 2) an evaluation set, which comprises 100 scientific articles manually annotated for evaluation purposes. To the best of our knowledge, SciDMT is the largest corpus for scientific entity mention detection. The corpus’s scale and diversity are instrumental in developing and refining models for tasks such as indexing scientific papers, enhancing information retrieval, and improving the accessibility of scientific knowledge. We demonstrate the corpus’s utility through experiments with advanced deep learning architectures like SciBERT and GPT-3.5. Our findings establish performance baselines and highlight unresolved challenges in scientific mention detection. SciDMT serves as a robust benchmark for the research community, encouraging the development of innovative models to further the field of scientific information extraction.
The recognition of dataset names is a critical task for automatic information extraction in scientific literature, enabling researchers to understand and identify research opportunities. However, existing corpora for dataset mention detection are limited in size and naming diversity. In this paper, we introduce the Dataset Mentions Detection Dataset (DMDD), the largest publicly available corpus for this task. DMDD consists of the DMDD main corpus, comprising 31,219 scientific articles with over 449,000 dataset mentions weakly annotated in the format of in-text spans, and an evaluation set, which comprises 450 scientific articles manually annotated for evaluation purposes. We use DMDD to establish baseline performance for dataset mention detection and linking. By analyzing the performance of various models on DMDD, we are able to identify open problems in dataset mention detection. We invite the community to use our dataset as a challenge to develop novel dataset mention detection models.
Social media is the ultimate challenge for many natural language processing tools. The constant emergence of linguistic constructs challenge even the most sophisticated NLP tools. Predicting word embeddings for out of vocabulary words is one of those challenges. Word embedding models only include terms that occur a sufficient number of times in their training corpora. Word embedding vector models are unable to directly provide any useful information about a word not in their vocabularies. We propose a fast method for predicting vectors for out of vocabulary terms that makes use of the surrounding terms of the unknown term and the hidden context layer of the word2vec model. We propose this method as a strong baseline in the sense that 1) while it does not surpass all state-of-the-art methods, it surpasses several techniques for vector prediction on benchmark tasks, 2) even when it underperforms, the margin is very small retaining competitive performance in downstream tasks, and 3) it is inexpensive to compute, requiring no additional training stage. We also show that our technique can be incorporated into existing methods to achieve a new state-of-the-art on the word vector prediction problem.
We use a deep bidirectional transformer to extract the Myers-Briggs personality type from user-generated data in a multi-label and multi-class classification setting. Our dataset is large and made up of three available personality datasets of various social media platforms including Reddit, Twitter, and Personality Cafe forum. We induce personality embeddings from our transformer-based model and investigate if they can be used for downstream text classification tasks. Experimental evidence shows that personality embeddings are effective in three classification tasks including authorship verification, stance, and hyperpartisan detection. We also provide novel and interpretable analysis for the third task: hyperpartisan news classification.
Opinion prediction is an emerging research area with diverse real-world applications, such as market research and situational awareness. We identify two lines of approaches to the problem of opinion prediction. One uses topic-based sentiment analysis with time-series modeling, while the other uses static embedding of text. The latter approaches seek user-specific solutions by generating user fingerprints. Such approaches are useful in predicting user’s reactions to unseen content. In this work, we propose a novel dynamic fingerprinting method that leverages contextual embedding of user’s comments conditioned on relevant user’s reading history. We integrate BERT variants with a recurrent neural network to generate predictions. The results show up to 13% improvement in micro F1-score compared to previous approaches. Experimental results show novel insights that were previously unknown such as better predictions for an increase in dynamic history length, the impact of the nature of the article on performance, thereby laying the foundation for further research.
Claim verification is challenging because it requires first to find textual evidence and then apply claim-evidence entailment to verify a claim. Previous works evaluate the entailment step based on the retrieved evidence, whereas we hypothesize that the entailment prediction can provide useful signals for evidence retrieval, in the sense that if a sentence supports or refutes a claim, the sentence must be relevant. We propose a novel model that uses the entailment score to express the relevancy. Our experiments verify that leveraging entailment prediction improves ranking multiple pieces of evidence.
Predicting users’ opinions in their response to social events has important real-world applications, many of which political and social impacts. Existing approaches derive a population’s opinion on a going event from large scores of user generated content. In certain scenarios, we may not be able to acquire such content and thus cannot infer an unbiased opinion on those emerging events. To address this problem, we propose to explore opinion on unseen articles based on one’s fingerprinting: the prior reading and commenting history. This work presents a focused study on modeling and leveraging fingerprinting techniques to predict a user’s future opinion. We introduce a recurrent neural network based model that integrates fingerprinting. We collect a large dataset that consists of event-comment pairs from six news websites. We evaluate the proposed model on this dataset. The results show substantial performance gains demonstrating the effectiveness of our approach.
We investigate whether pre-trained bidirectional transformers with sentiment and emotion information improve stance detection in long discussions of contemporary issues. As a part of this work, we create a novel stance detection dataset covering 419 different controversial issues and their related pros and cons collected by procon.org in nonpartisan format. Experimental results show that a shallow recurrent neural network with sentiment or emotion information can reach competitive results compared to fine-tuned BERT with 20x fewer parameters. We also use a simple approach that explains which input phrases contribute to stance detection.
We introduce DebugSL, a visual (Web) debugging tool for sentiment lexicons (SLs). Its core component implements our algorithms for the automatic detection of polarity inconsistencies in SLs. An inconsistency is a set of words and/or word-senses whose polarity assignments cannot all be simultaneously satisfied. DebugSL finds inconsistencies of small sizes in SLs and has a rich user interface which helps users in the correction process. The project source code is available at https://github.com/atschneid/DebugSL A screencast of DebugSL can be viewed at https://cis.temple.edu/~edragut/DebugSL.webm
Many important entity types in web documents, such as dates, times, email addresses, and course numbers, follow or closely resemble patterns that can be described by Regular Expressions (REs). Due to a vast diversity of web documents and ways in which they are being generated, even seemingly straightforward tasks such as identifying mentions of date in a document become very challenging. It is reasonable to claim that it is impossible to create a RE that is capable of identifying such entities from web documents with perfect precision and recall. Rather than abandoning REs as a go-to approach for entity detection, this paper explores ways to combine the expressive power of REs, ability of deep learning to learn from large data, and human-in-the loop approach into a new integrated framework for entity identification from web data. The framework starts by creating or collecting the existing REs for a particular type of an entity. Those REs are then used over a large document corpus to collect weak labels for the entity mentions and a neural network is trained to predict those RE-generated weak labels. Finally, a human expert is asked to label a small set of documents and the neural network is fine tuned on those documents. The experimental evaluation on several entity identification problems shows that the proposed framework achieves impressive accuracy, while requiring very modest human effort.
Satirical news is considered to be entertainment, but it is potentially deceptive and harmful. Despite the embedded genre in the article, not everyone can recognize the satirical cues and therefore believe the news as true news. We observe that satirical cues are often reflected in certain paragraphs rather than the whole document. Existing works only consider document-level features to detect the satire, which could be limited. We consider paragraph-level linguistic features to unveil the satire by incorporating neural network and attention mechanism. We investigate the difference between paragraph-level features and document-level features, and analyze them on a large satirical news dataset. The evaluation shows that the proposed model detects satirical news effectively and reveals what features are important at which level.