Edward Lin


2022

pdf bib
Mask the Correct Tokens: An Embarrassingly Simple Approach for Error Correction
Kai Shen | Yichong Leng | Xu Tan | Siliang Tang | Yuan Zhang | Wenjie Liu | Edward Lin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Text error correction aims to correct the errors in text sequences such as those typed by humans or generated by speech recognition models.Previous error correction methods usually take the source (incorrect) sentence as encoder input and generate the target (correct) sentence through the decoder. Since the error rate of the incorrect sentence is usually low (e.g., 10%), the correction model can only learn to correct on limited error tokens but trivially copy on most tokens (correct tokens), which harms the effective training of error correction. In this paper, we argue that the correct tokens should be better utilized to facilitate effective training and then propose a simple yet effective masking strategy to achieve this goal.Specifically, we randomly mask out a part of the correct tokens in the source sentence and let the model learn to not only correct the original error tokens but also predict the masked tokens based on their context information. Our method enjoys several advantages: 1) it alleviates trivial copy; 2) it leverages effective training signals from correct tokens; 3) it is a plug-and-play module and can be applied to different models and tasks. Experiments on spelling error correction and speech recognition error correction on Mandarin datasets and grammar error correction on English datasets with both autoregressive and non-autoregressive generation models show that our method improves the correctionaccuracy consistently.

2021

pdf bib
FastCorrect 2: Fast Error Correction on Multiple Candidates for Automatic Speech Recognition
Yichong Leng | Xu Tan | Rui Wang | Linchen Zhu | Jin Xu | Wenjie Liu | Linquan Liu | Xiang-Yang Li | Tao Qin | Edward Lin | Tie-Yan Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Error correction is widely used in automatic speech recognition (ASR) to post-process the generated sentence, and can further reduce the word error rate (WER). Although multiple candidates are generated by an ASR system through beam search, current error correction approaches can only correct one sentence at a time, failing to leverage the voting effect from multiple candidates to better detect and correct error tokens. In this work, we propose FastCorrect 2, an error correction model that takes multiple ASR candidates as input for better correction accuracy. FastCorrect 2 adopts non-autoregressive generation for fast inference, which consists of an encoder that processes multiple source sentences and a decoder that generates the target sentence in parallel from the adjusted source sentence, where the adjustment is based on the predicted duration of each source token. However, there are some issues when handling multiple source sentences. First, it is non-trivial to leverage the voting effect from multiple source sentences since they usually vary in length. Thus, we propose a novel alignment algorithm to maximize the degree of token alignment among multiple sentences in terms of token and pronunciation similarity. Second, the decoder can only take one adjusted source sentence as input, while there are multiple source sentences. Thus, we develop a candidate predictor to detect the most suitable candidate for the decoder. Experiments on our inhouse dataset and AISHELL-1 show that FastCorrect 2 can further reduce the WER over the previous correction model with single candidate by 3.2% and 2.6%, demonstrating the effectiveness of leveraging multiple candidates in ASR error correction. FastCorrect 2 achieves better performance than the cascaded re-scoring and correction pipeline and can serve as a unified post-processing module for ASR.

2013

pdf bib
This Text Has the Scent of Starbucks: A Laplacian Structured Sparsity Model for Computational Branding Analytics
William Yang Wang | Edward Lin | John Kominek
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing