Ee-Peng Lim


2023

pdf bib
Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models
Lei Wang | Wanyu Xu | Yihuai Lan | Zhiqiang Hu | Yunshi Lan | Roy Ka-Wei Lee | Ee-Peng Lim
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) have recently been shown to deliver impressive performance in various NLP tasks. To tackle multi-step reasoning tasks, Few-shot chain-of-thought (CoT) prompting includes a few manually crafted step-by-step reasoning demonstrations which enable LLMs to explicitly generate reasoning steps and improve their reasoning task accuracy. To eliminate the manual efforts, Zero-shot-CoT concatenates the target problem statement with “Let’s think step by step” as an input prompt to LLMs. Despite the success of Zero-shot-CoT, it still suffers from three pitfalls: calculation errors, missing-step errors, and semantic misunderstanding errors. To address the missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of two components: first, devising a plan to divide the entire task into smaller subtasks, and then carrying out the subtasks according to the plan. To address the calculation errors and improve the quality of generated reasoning steps, we extend PS prompting with more detailed instructions and derive PS+ prompting. We evaluate our proposed prompting strategy on ten datasets across three reasoning problems. The experimental results over GPT-3 show that our proposed zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought Prompting, and has comparable performance with 8-shot CoT prompting on the math reasoning problem. The code can be found at https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.

pdf bib
LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models
Zhiqiang Hu | Lei Wang | Yihuai Lan | Wanyu Xu | Ee-Peng Lim | Lidong Bing | Xing Xu | Soujanya Poria | Roy Lee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The success of large language models (LLMs), like GPT-4 and ChatGPT, has led to the development of numerous cost-effective and accessible alternatives that are created by finetuning open-access LLMs with task-specific data (e.g., ChatDoctor) or instruction data (e.g., Alpaca). Among the various fine-tuning methods, adapter-based parameter-efficient fine-tuning (PEFT) is undoubtedly one of the most attractive topics, as it only requires fine-tuning a few external parameters instead of the entire LLMs while achieving comparable or even better performance. To enable further research on PEFT methods of LLMs, this paper presents LLM-Adapters, an easy-to-use framework that integrates various adapters into LLMs and can execute these adapter-based PEFT methods of LLMs for different tasks. The framework includes state-of-the-art open-access LLMs such as LLaMA, BLOOM, and GPT-J, as well as widely used adapters such as Series adapters, Parallel adapter, Prompt-based learning and Reparametrization-based methods. Moreover, we conduct extensive empirical studies on the impact of adapter types, placement locations, and hyper-parameters to the best design for each adapter-based methods. We evaluate the effectiveness of the adapters on fourteen datasets from two different reasoning tasks, Arithmetic Reasoning and Commonsense Reasoning. The results demonstrate that using adapter-based PEFT in smaller-scale LLMs (7B) with few extra trainable parameters yields comparable, and in some cases superior, performance to powerful LLMs (175B) in zero-shot inference on simple math reasoning datasets.

pdf bib
LLM4Vis: Explainable Visualization Recommendation using ChatGPT
Lei Wang | Songheng Zhang | Yun Wang | Ee-Peng Lim | Yong Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Data visualization is a powerful tool for exploring and communicating insights in various domains. To automate visualization choice for datasets, a task known as visualization recommendation has been proposed. Various machine-learning-based approaches have been developed for this purpose, but they often require a large corpus of dataset-visualization pairs for training and lack natural explanations for their results. To address this research gap, we propose LLM4Vis, a novel ChatGPT-based prompting approach to perform visualization recommendation and return human-like explanations using very few demonstration examples. Our approach involves feature description, demonstration example selection, explanation generation, demonstration example construction, and inference steps. To obtain demonstration examples with high-quality explanations, we propose a new explanation generation bootstrapping to iteratively refine generated explanations by considering the previous generation and template-based hint. Evaluations on the VizML dataset show that LLM4Vis outperforms or performs similarly to supervised learning models like Random Forest, Decision Tree, and MLP, in both few-shot and zero-shot settings. The qualitative evaluation also shows the effectiveness of explanations generated by LLM4Vis.

2022

pdf bib
Guided Attention Multimodal Multitask Financial Forecasting with Inter-Company Relationships and Global and Local News
Gary Ang | Ee-Peng Lim
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most works on financial forecasting use information directly associated with individual companies (e.g., stock prices, news on the company) to predict stock returns for trading. We refer to such company-specific information as local information. Stock returns may also be influenced by global information (e.g., news on the economy in general), and inter-company relationships. Capturing such diverse information is challenging due to the low signal-to-noise ratios, different time-scales, sparsity and distributions of global and local information from different modalities. In this paper, we propose a model that captures both global and local multimodal information for investment and risk management-related forecasting tasks. Our proposed Guided Attention Multimodal Multitask Network (GAME) model addresses these challenges by using novel attention modules to guide learning with global and local information from different modalities and dynamic inter-company relationship networks. Our extensive experiments show that GAME outperforms other state-of-the-art models in several forecasting tasks and important real-world application case studies.

2021

pdf bib
Enconter: Entity Constrained Progressive Sequence Generation via Insertion-based Transformer
Lee Hsun Hsieh | Yang-Yin Lee | Ee-Peng Lim
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Pretrained using large amount of data, autoregressive language models are able to generate high quality sequences. However, these models do not perform well under hard lexical constraints as they lack fine control of content generation process. Progressive insertion based transformers can overcome the above limitation and efficiently generate a sequence in parallel given some input tokens as constraint. These transformers however may fail to support hard lexical constraints as their generation process is more likely to terminate prematurely. The paper analyses such early termination problems and proposes the ENtity CONstrained insertion TransformER(ENCONTER), a new insertion transformer that addresses the above pitfall without compromising much generation efficiency. We introduce a new training strategy that considers predefined hard lexical constraints (e.g., entities to be included in the generated sequence). Our experiments show that ENCONTER outperforms other baseline models in several performance metrics rendering it more suitable in practical applications.

pdf bib
NOAHQA: Numerical Reasoning with Interpretable Graph Question Answering Dataset
Qiyuan Zhang | Lei Wang | Sicheng Yu | Shuohang Wang | Yang Wang | Jing Jiang | Ee-Peng Lim
Findings of the Association for Computational Linguistics: EMNLP 2021

While diverse question answering (QA) datasets have been proposed and contributed significantly to the development of deep learning models for QA tasks, the existing datasets fall short in two aspects. First, we lack QA datasets covering complex questions that involve answers as well as the reasoning processes to get them. As a result, the state-of-the-art QA research on numerical reasoning still focuses on simple calculations and does not provide the mathematical expressions or evidence justifying the answers. Second, the QA community has contributed a lot of effort to improve the interpretability of QA models. However, they fail to explicitly show the reasoning process, such as the evidence order for reasoning and the interactions between different pieces of evidence. To address the above shortcoming, we introduce NOAHQA, a conversational and bilingual QA dataset with questions requiring numerical reasoning with compound mathematical expressions. With NOAHQA, we develop an interpretable reasoning graph as well as the appropriate evaluation metric to measure the answer quality. We evaluate the state-of-the-art QA models trained using existing QA datasets on NOAHQA and show that the best among them can only achieve 55.5 exact match scores, while the human performance is 89.7. We also present a new QA model for generating a reasoning graph where the reasoning graph metric still has a large gap compared with that of humans, eg, 28 scores.

2020

pdf bib
Graph-to-Tree Learning for Solving Math Word Problems
Jipeng Zhang | Lei Wang | Roy Ka-Wei Lee | Yi Bin | Yan Wang | Jie Shao | Ee-Peng Lim
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While the recent tree-based neural models have demonstrated promising results in generating solution expression for the math word problem (MWP), most of these models do not capture the relationships and order information among the quantities well. This results in poor quantity representations and incorrect solution expressions. In this paper, we propose Graph2Tree, a novel deep learning architecture that combines the merits of the graph-based encoder and tree-based decoder to generate better solution expressions. Included in our Graph2Tree framework are two graphs, namely the Quantity Cell Graph and Quantity Comparison Graph, which are designed to address limitations of existing methods by effectively representing the relationships and order information among the quantities in MWPs. We conduct extensive experiments on two available datasets. Our experiment results show that Graph2Tree outperforms the state-of-the-art baselines on two benchmark datasets significantly. We also discuss case studies and empirically examine Graph2Tree’s effectiveness in translating the MWP text into solution expressions.

2012

pdf bib
Finding Bursty Topics from Microblogs
Qiming Diao | Jing Jiang | Feida Zhu | Ee-Peng Lim
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2011

pdf bib
Topical Keyphrase Extraction from Twitter
Xin Zhao | Jing Jiang | Jing He | Yang Song | Palakorn Achanauparp | Ee-Peng Lim | Xiaoming Li
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies