Einat Minkov


2024

pdf bib
A Closer Look at Multidimensional Online Political Incivility
Sagi Pendzel | Nir Lotan | Alon Zoizner | Einat Minkov
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Toxic online political discourse has become prevalent, where scholars debate about its impact to Democratic processes. This work presents a large-scale study of political incivility on Twitter. In line with theories of political communication, we differentiate between harsh ‘impolite’ style and intolerant substance. We present a dataset of 13K political tweets in the U.S. context, which we collected and labeled by those categories using crowd sourcing. Our dataset and results shed light on hostile political discourse focused on partisan conflicts in the U.S. The evaluation of state-of-the-art classifiers illustrates the challenges involved in political incivility detection, which often requires high-level semantic and social understanding. Nevertheless, performing incivility detection at scale, we are able to characterise its distribution across individual users and geopolitical regions, where our findings align and extend existing theories of political communication. In particular, we find that roughly 80% of the uncivil tweets are authored by 20% of the users, where users who are politically engaged are more inclined to use uncivil language. We further find that political incivility exhibits network homophily, and that incivility is more prominent in highly competitive geopolitical regions. Our results apply to both uncivil style and substance.

2021

pdf bib
Fight Fire with Fire: Fine-tuning Hate Detectors using Large Samples of Generated Hate Speech
Tomer Wullach | Amir Adler | Einat Minkov
Findings of the Association for Computational Linguistics: EMNLP 2021

Automatic hate speech detection is hampered by the scarcity of labeled datasetd, leading to poor generalization. We employ pretrained language models (LMs) to alleviate this data bottleneck. We utilize the GPT LM for generating large amounts of synthetic hate speech sequences from available labeled examples, and leverage the generated data in fine-tuning large pretrained LMs on hate detection. An empirical study using the models of BERT, RoBERTa and ALBERT, shows that this approach improves generalization significantly and consistently within and across data distributions. In fact, we find that generating relevant labeled hate speech sequences is preferable to using out-of-domain, and sometimes also within-domain, human-labeled examples.

2016

pdf bib
Multi-source named entity typing for social media
Reuth Vexler | Einat Minkov
Proceedings of the Sixth Named Entity Workshop

2015

pdf bib
Learning to Identify the Best Contexts for Knowledge-based WSD
Evgenia Wasserman Pritsker | William Cohen | Einat Minkov
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Learning Relational Features with Backward Random Walks
Ni Lao | Einat Minkov | William Cohen
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2012

pdf bib
Discriminative Learning for Joint Template Filling
Einat Minkov | Luke Zettlemoyer
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Graph Based Similarity Measures for Synonym Extraction from Parsed Text
Einat Minkov | William Cohen
Workshop Proceedings of TextGraphs-7: Graph-based Methods for Natural Language Processing

2008

pdf bib
Learning Graph Walk Based Similarity Measures for Parsed Text
Einat Minkov | William W. Cohen
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing

2007

pdf bib
Generating Complex Morphology for Machine Translation
Einat Minkov | Kristina Toutanova | Hisami Suzuki
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics

2006

pdf bib
NER Systems that Suit User’s Preferences: Adjusting the Recall-Precision Trade-off for Entity Extraction
Einat Minkov | Richard Wang | Anthony Tomasic | William Cohen
Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers

pdf bib
A Graphical Framework for Contextual Search and Name Disambiguation in Email
Einat Minkov | William Cohen | Andrew Ng
Proceedings of TextGraphs: the First Workshop on Graph Based Methods for Natural Language Processing

2005

pdf bib
Extracting Personal Names from Email: Applying Named Entity Recognition to Informal Text
Einat Minkov | Richard C. Wang | William W. Cohen
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing