Eleftheria Tsipidi


pdf bib
An Exploration of Left-Corner Transformations
Andreas Opedal | Eleftheria Tsipidi | Tiago Pimentel | Ryan Cotterell | Tim Vieira
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The left-corner transformation (Rosenkrantz and Lewis, 1970) is used to remove left recursion from context-free grammars, which is an important step towards making the grammar parsable top-down with simple techniques. This paper generalizes prior left-corner transformations to support semiring-weighted production rules and to provide finer-grained control over which left corners may be moved. Our generalized left-corner transformation (GLCT) arose from unifying the left-corner transformation and speculation transformation (Eisner and Blatz, 2007), originally for logic programming. Our new transformation and speculation define equivalent weighted languages. Yet, their derivation trees are structurally different in an important way: GLCT replaces left recursion with right recursion, and speculation does not. We also provide several technical results regarding the formal relationships between the outputs of GLCT, speculation, and the original grammar. Lastly, we empirically investigate the efficiency of GLCT for left-recursion elimination from grammars of nine languages. Code: https://github.com/rycolab/left-corner


pdf bib
Generating Animations from Screenplays
Yeyao Zhang | Eleftheria Tsipidi | Sasha Schriber | Mubbasir Kapadia | Markus Gross | Ashutosh Modi
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)

Automatically generating animation from natural language text finds application in a number of areas e.g. movie script writing, instructional videos, and public safety. However, translating natural language text into animation is a challenging task. Existing text-to-animation systems can handle only very simple sentences, which limits their applications. In this paper, we develop a text-to-animation system which is capable of handling complex sentences. We achieve this by introducing a text simplification step into the process. Building on an existing animation generation system for screenwriting, we create a robust NLP pipeline to extract information from screenplays and map them to the system’s knowledge base. We develop a set of linguistic transformation rules that simplify complex sentences. Information extracted from the simplified sentences is used to generate a rough storyboard and video depicting the text. Our sentence simplification module outperforms existing systems in terms of BLEU and SARI metrics. We further evaluated our system via a user study: 68% participants believe that our system generates reasonable animation from input screenplays.