In this paper we present the final result of a project focused on Tunisian Arabic encoded in Arabizi, the Latin-based writing system for digital conversations. The project led to the realization of two integrated and independent tools: a linguistic corpus and a neural network architecture created to annotate the former with various levels of linguistic information (code-switching classification, transliteration, tokenization, POS-tagging, lemmatization). We discuss the choices made in terms of computational and linguistic methodology and the strategies adopted to improve our results. We report on the experiments performed in order to outline our research path. Finally, we explain the reasons why we believe in the potential of these tools for both computational and linguistic researches.
This article describes the constitution process of the first morpho-syntactically annotated Tunisian Arabish Corpus (TArC). Arabish, also known as Arabizi, is a spontaneous coding of Arabic dialects in Latin characters and “arithmographs” (numbers used as letters). This code-system was developed by Arabic-speaking users of social media in order to facilitate the writing in the Computer-Mediated Communication (CMC) and text messaging informal frameworks. Arabish differs for each Arabic dialect and each Arabish code-system is under-resourced, in the same way as most of the Arabic dialects. In the last few years, the attention of NLP studies on Arabic dialects has considerably increased. Taking this into consideration, TArC will be a useful support for different types of analyses, computational and linguistic, as well as for NLP tools training. In this article we will describe preliminary work on the TArC semi-automatic construction process and some of the first analyses we developed on TArC. In addition, in order to provide a complete overview of the challenges faced during the building process, we will present the main Tunisian dialect characteristics and its encoding in Tunisian Arabish.
TArC : Incrementally and Semi-Automatically Collecting a Tunisian arabish Corpus This article describes the collection process of the first morpho-syntactically annotated Tunisian arabish Corpus (TArC). Arabish is a spontaneous coding of Arabic Dialects (AD) in Latin characters and arithmographs (numbers used as letters). This code-system was developed by Arabic-speaking users of social media in order to facilitate the communication on digital devices. Arabish differs for each Arabic dialect and each arabish code-system is under-resourced. In the last few years, the attention of NLP on AD has considerably increased. TArC will be thus a useful support for different types of analyses, as well as for NLP tools training. In this article we will describe preliminary work on the TArC semi-automatic construction process and some of the first analyses on the corpus. In order to provide a complete overview of the challenges faced during the building process, we will present the main Tunisian dialect characteristics and its encoding in Tunisian arabish.
In this paper we propose a multi-task sequence prediction system, based on recurrent neural networks and used to annotate on multiple levels an Arabizi Tunisian corpus. The annotation performed are text classification, tokenization, PoS tagging and encoding of Tunisian Arabizi into CODA* Arabic orthography. The system is learned to predict all the annotation levels in cascade, starting from Arabizi input. We evaluate the system on the TIGER German corpus, suitably converting data to have a multi-task problem, in order to show the effectiveness of our neural architecture. We show also how we used the system in order to annotate a Tunisian Arabizi corpus, which has been afterwards manually corrected and used to further evaluate sequence models on Tunisian data. Our system is developed for the Fairseq framework, which allows for a fast and easy use for any other sequence prediction problem.