Ellen Zhang
2024
On Evaluating the Integration of Reasoning and Action in LLM Agents with Database Question Answering
Linyong Nan
|
Ellen Zhang
|
Weijin Zou
|
Yilun Zhao
|
Wenfei Zhou
|
Arman Cohan
Findings of the Association for Computational Linguistics: NAACL 2024
This study introduces a new long-form database question answering dataset designed to evaluate how Large Language Models (LLMs) interact with a SQL interpreter. The task necessitates LLMs to strategically generate multiple SQL queries to retrieve sufficient data from a database, to reason with the acquired context, and to synthesize them into a comprehensive analytical narrative. Our findings highlight that this task poses great challenges even for the state-of-the-art **GPT-4** model. We propose and evaluate two interaction strategies, and provide a fine-grained analysis of the individual stages within the interaction. A key discovery is the identification of two primary bottlenecks hindering effective interaction: the capacity for planning and the ability to generate multiple SQL queries. To address the challenge of accurately assessing answer quality, we introduce a multi-agent evaluation framework that simulates the academic peer-review process, enhancing the precision and reliability of our evaluations. This framework allows for a more nuanced understanding of the strengths and limitations of current LLMs in complex retrieval and reasoning tasks.
2023
Enhancing Text-to-SQL Capabilities of Large Language Models: A Study on Prompt Design Strategies
Linyong Nan
|
Yilun Zhao
|
Weijin Zou
|
Narutatsu Ri
|
Jaesung Tae
|
Ellen Zhang
|
Arman Cohan
|
Dragomir Radev
Findings of the Association for Computational Linguistics: EMNLP 2023
In-context learning (ICL) has emerged as a new approach to various natural language processing tasks, utilizing large language models (LLMs) to make predictions based on context that has been supplemented with a few examples or task-specific instructions. In this paper, we aim to extend this method to question answering tasks that utilize structured knowledge sources, and improve Text-to-SQL systems by exploring various prompt design strategies for employing LLMs. We conduct a systematic investigation into different demonstration selection methods and optimal instruction formats for prompting LLMs in the Text-to-SQL task. Our approach involves leveraging the syntactic structure of an example’s SQL query to retrieve demonstrations, and we demonstrate that pursuing both diversity and similarity in demonstration selection leads to enhanced performance. Furthermore, we show that LLMs benefit from database-related knowledge augmentations. Our most effective strategy outperforms the state-of-the-art system by 2.5 points (Execution Accuracy) and the best fine-tuned system by 5.1 points on the Spider dataset. These results highlight the effectiveness of our approach in adapting LLMs to the Text-to-SQL task, and we present an analysis of the factors contributing to the success of our strategy.
Search
Fix data
Co-authors
- Arman Cohan 2
- Linyong Nan 2
- Yilun Zhao 2
- Weijin Zou 2
- Dragomir Radev 1
- show all...