Elliot Schumacher


pdf bib
Cross-Lingual Transfer in Zero-Shot Cross-Language Entity Linking
Elliot Schumacher | James Mayfield | Mark Dredze
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021


pdf bib
Clinical Concept Linking with Contextualized Neural Representations
Elliot Schumacher | Andriy Mulyar | Mark Dredze
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In traditional approaches to entity linking, linking decisions are based on three sources of information – the similarity of the mention string to an entity’s name, the similarity of the context of the document to the entity, and broader information about the knowledge base (KB). In some domains, there is little contextual information present in the KB and thus we rely more heavily on mention string similarity. We consider one example of this, concept linking, which seeks to link mentions of medical concepts to a medical concept ontology. We propose an approach to concept linking that leverages recent work in contextualized neural models, such as ELMo (Peters et al. 2018), which create a token representation that integrates the surrounding context of the mention and concept name. We find a neural ranking approach paired with contextualized embeddings provides gains over a competitive baseline (Leaman et al. 2013). Additionally, we find that a pre-training step using synonyms from the ontology offers a useful initialization for the ranker.


pdf bib
Predicting the Relative Difficulty of Single Sentences With and Without Surrounding Context
Elliot Schumacher | Maxine Eskenazi | Gwen Frishkoff | Kevyn Collins-Thompson
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing