Elliott Ash


2022

pdf bib
DocSCAN: Unsupervised Text Classification via Learning from Neighbors
Dominik Stammbach | Elliott Ash
Proceedings of the 18th Conference on Natural Language Processing (KONVENS 2022)

pdf bib
MemSum: Extractive Summarization of Long Documents Using Multi-Step Episodic Markov Decision Processes
Nianlong Gu | Elliott Ash | Richard Hahnloser
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We introduce MemSum (Multi-step Episodic Markov decision process extractive SUMmarizer), a reinforcement-learning-based extractive summarizer enriched at each step with information on the current extraction history. When MemSum iteratively selects sentences into the summary, it considers a broad information set that would intuitively also be used by humans in this task: 1) the text content of the sentence, 2) the global text context of the rest of the document, and 3) the extraction history consisting of the set of sentences that have already been extracted. With a lightweight architecture, MemSum obtains state-of-the-art test-set performance (ROUGE) in summarizing long documents taken from PubMed, arXiv, and GovReport. Ablation studies demonstrate the importance of local, global, and history information. A human evaluation confirms the high quality and low redundancy of the generated summaries, stemming from MemSum’s awareness of extraction history.

pdf bib
Heroes, Villains, and Victims, and GPT-3: Automated Extraction of Character Roles Without Training Data
Dominik Stammbach | Maria Antoniak | Elliott Ash
Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)

This paper shows how to use large-scale pretrained language models to extract character roles from narrative texts without domain-specific training data. Queried with a zero-shot question-answering prompt, GPT-3 can identify the hero, villain, and victim in diverse domains: newspaper articles, movie plot summaries, and political speeches.

2021

pdf bib
Machine Extraction of Tax Laws from Legislative Texts
Elliott Ash | Malka Guillot | Luyang Han
Proceedings of the Natural Legal Language Processing Workshop 2021

Using a corpus of compiled codes from U.S. states containing labeled tax law sections, we train text classifiers to automatically tag tax-law documents and, further, to identify the associated revenue source (e.g. income, property, or sales). After evaluating classifier performance in held-out test data, we apply them to an historical corpus of U.S. state legislation to extract the flow of relevant laws over the years 1910 through 2010. We document that the classifiers are effective in the historical corpus, for example by automatically detecting establishments of state personal income taxes. The trained models with replication code are published at https://github.com/luyang521/tax-classification.

2019

pdf bib
Proceedings of the Natural Legal Language Processing Workshop 2019
Nikolaos Aletras | Elliott Ash | Leslie Barrett | Daniel Chen | Adam Meyers | Daniel Preotiuc-Pietro | David Rosenberg | Amanda Stent
Proceedings of the Natural Legal Language Processing Workshop 2019