Emily Alsentzer
2021
What’s in a Summary? Laying the Groundwork for Advances in Hospital-Course Summarization
Griffin Adams
|
Emily Alsentzer
|
Mert Ketenci
|
Jason Zucker
|
Noémie Elhadad
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Summarization of clinical narratives is a long-standing research problem. Here, we introduce the task of hospital-course summarization. Given the documentation authored throughout a patient’s hospitalization, generate a paragraph that tells the story of the patient admission. We construct an English, text-to-text dataset of 109,000 hospitalizations (2M source notes) and their corresponding summary proxy: the clinician-authored “Brief Hospital Course” paragraph written as part of a discharge note. Exploratory analyses reveal that the BHC paragraphs are highly abstractive with some long extracted fragments; are concise yet comprehensive; differ in style and content organization from the source notes; exhibit minimal lexical cohesion; and represent silver-standard references. Our analysis identifies multiple implications for modeling this complex, multi-document summarization task.
2019
Publicly Available Clinical BERT Embeddings
Emily Alsentzer
|
John Murphy
|
William Boag
|
Wei-Hung Weng
|
Di Jindi
|
Tristan Naumann
|
Matthew McDermott
Proceedings of the 2nd Clinical Natural Language Processing Workshop
Contextual word embedding models such as ELMo and BERT have dramatically improved performance for many natural language processing (NLP) tasks in recent months. However, these models have been minimally explored on specialty corpora, such as clinical text; moreover, in the clinical domain, no publicly-available pre-trained BERT models yet exist. In this work, we address this need by exploring and releasing BERT models for clinical text: one for generic clinical text and another for discharge summaries specifically. We demonstrate that using a domain-specific model yields performance improvements on 3/5 clinical NLP tasks, establishing a new state-of-the-art on the MedNLI dataset. We find that these domain-specific models are not as performant on 2 clinical de-identification tasks, and argue that this is a natural consequence of the differences between de-identified source text and synthetically non de-identified task text.
Search
Fix data
Co-authors
- Griffin Adams 1
- William Boag 1
- Noémie Elhadad 1
- Di Jindi 1
- Mert Ketenci 1
- show all...