Emily Sheng


pdf bib
“Nice Try, Kiddo”: Investigating Ad Hominems in Dialogue Responses
Emily Sheng | Kai-Wei Chang | Prem Natarajan | Nanyun Peng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Ad hominem attacks are those that target some feature of a person’s character instead of the position the person is maintaining. These attacks are harmful because they propagate implicit biases and diminish a person’s credibility. Since dialogue systems respond directly to user input, it is important to study ad hominems in dialogue responses. To this end, we propose categories of ad hominems, compose an annotated dataset, and build a classifier to analyze human and dialogue system responses to English Twitter posts. We specifically compare responses to Twitter topics about marginalized communities (#BlackLivesMatter, #MeToo) versus other topics (#Vegan, #WFH), because the abusive language of ad hominems could further amplify the skew of power away from marginalized populations. Furthermore, we propose a constrained decoding technique that uses salient n-gram similarity as a soft constraint for top-k sampling to reduce the amount of ad hominems generated. Our results indicate that 1) responses from both humans and DialoGPT contain more ad hominems for discussions around marginalized communities, 2) different quantities of ad hominems in the training data can influence the likelihood of generating ad hominems, and 3) we can use constrained decoding techniques to reduce ad hominems in generated dialogue responses.

pdf bib
Societal Biases in Language Generation: Progress and Challenges
Emily Sheng | Kai-Wei Chang | Prem Natarajan | Nanyun Peng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Technology for language generation has advanced rapidly, spurred by advancements in pre-training large models on massive amounts of data and the need for intelligent agents to communicate in a natural manner. While techniques can effectively generate fluent text, they can also produce undesirable societal biases that can have a disproportionately negative impact on marginalized populations. Language generation presents unique challenges for biases in terms of direct user interaction and the structure of decoding techniques. To better understand these challenges, we present a survey on societal biases in language generation, focusing on how data and techniques contribute to biases and progress towards reducing biases. Motivated by a lack of studies on biases from decoding techniques, we also conduct experiments to quantify the effects of these techniques. By further discussing general trends and open challenges, we call to attention promising directions for research and the importance of fairness and inclusivity considerations for language generation applications.


pdf bib
Investigating Societal Biases in a Poetry Composition System
Emily Sheng | David Uthus
Proceedings of the Second Workshop on Gender Bias in Natural Language Processing

There is a growing collection of work analyzing and mitigating societal biases in language understanding, generation, and retrieval tasks, though examining biases in creative tasks remains underexplored. Creative language applications are meant for direct interaction with users, so it is important to quantify and mitigate societal biases in these applications. We introduce a novel study on a pipeline to mitigate societal biases when retrieving next verse suggestions in a poetry composition system. Our results suggest that data augmentation through sentiment style transfer has potential for mitigating societal biases.

pdf bib
Towards Controllable Biases in Language Generation
Emily Sheng | Kai-Wei Chang | Prem Natarajan | Nanyun Peng
Findings of the Association for Computational Linguistics: EMNLP 2020

We present a general approach towards controllable societal biases in natural language generation (NLG). Building upon the idea of adversarial triggers, we develop a method to induce societal biases in generated text when input prompts contain mentions of specific demographic groups. We then analyze two scenarios: 1) inducing negative biases for one demographic and positive biases for another demographic, and 2) equalizing biases between demographics. The former scenario enables us to detect the types of biases present in the model. Specifically, we show the effectiveness of our approach at facilitating bias analysis by finding topics that correspond to demographic inequalities in generated text and comparing the relative effectiveness of inducing biases for different demographics. The second scenario is useful for mitigating biases in downstream applications such as dialogue generation. In our experiments, the mitigation technique proves to be effective at equalizing the amount of biases across demographics while simultaneously generating less negatively biased text overall.


pdf bib
The Woman Worked as a Babysitter: On Biases in Language Generation
Emily Sheng | Kai-Wei Chang | Premkumar Natarajan | Nanyun Peng
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We present a systematic study of biases in natural language generation (NLG) by analyzing text generated from prompts that contain mentions of different demographic groups. In this work, we introduce the notion of the regard towards a demographic, use the varying levels of regard towards different demographics as a defining metric for bias in NLG, and analyze the extent to which sentiment scores are a relevant proxy metric for regard. To this end, we collect strategically-generated text from language models and manually annotate the text with both sentiment and regard scores. Additionally, we build an automatic regard classifier through transfer learning, so that we can analyze biases in unseen text. Together, these methods reveal the extent of the biased nature of language model generations. Our analysis provides a study of biases in NLG, bias metrics and correlated human judgments, and empirical evidence on the usefulness of our annotated dataset.


pdf bib
An Investigation into the Pedagogical Features of Documents
Emily Sheng | Prem Natarajan | Jonathan Gordon | Gully Burns
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications

Characterizing the content of a technical document in terms of its learning utility can be useful for applications related to education, such as generating reading lists from large collections of documents. We refer to this learning utility as the “pedagogical value” of the document to the learner. While pedagogical value is an important concept that has been studied extensively within the education domain, there has been little work exploring it from a computational, i.e., natural language processing (NLP), perspective. To allow a computational exploration of this concept, we introduce the notion of “pedagogical roles” of documents (e.g., Tutorial and Survey) as an intermediary component for the study of pedagogical value. Given the lack of available corpora for our exploration, we create the first annotated corpus of pedagogical roles and use it to test baseline techniques for automatic prediction of such roles.

pdf bib
Structured Generation of Technical Reading Lists
Jonathan Gordon | Stephen Aguilar | Emily Sheng | Gully Burns
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications

Learners need to find suitable documents to read and prioritize them in an appropriate order. We present a method of automatically generating reading lists, selecting documents based on their pedagogical value to the learner and ordering them using the structure of concepts in the domain. Resulting reading lists related to computational linguistics were evaluated by advanced learners and judged to be near the quality of those generated by domain experts. We provide an open-source implementation of our method to enable future work on reading list generation.