The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where evaluation data is included in pre-training corpora used to train large scale models, compromising evaluation results. The workshop fostered a shared task to collect evidence on data contamination in current available datasets and models. The goal of the shared task and associated database is to assist the community in understanding the extent of the problem and to assist researchers in avoiding reporting evaluation results on known contaminated resources. The shared task provides a structured, centralized public database for the collection of contamination evidence, open to contributions from the community via GitHub pool requests. This first compilation paper is based on 566 reported entries over 91 contaminated sources from a total of 23 contributors. The details of the individual contamination events are available in the platform. The platform continues to be online, open to contributions from the community.
Massive-scale historical document collections are crucial for social science research. Despite increasing digitization, these documents typically lack unique cross-document identifiers for individuals mentioned within the texts, as well as individual identifiers from external knowledge bases like Wikipedia/Wikidata. Existing entity disambiguation methods often fall short in accuracy for historical documents, which are replete with individuals not remembered in contemporary knowledge bases. This study makes three key contributions to improve cross-document coreference resolution and disambiguation in historical texts: a massive-scale training dataset replete with hard negatives - that sources over 190 million entity pairs from Wikipedia contexts and disambiguation pages - high-quality evaluation data from hand-labeled historical newswire articles, and trained models evaluated on this historical benchmark. We contrastively train bi-encoder models for coreferencing and disambiguating individuals in historical texts, achieving accurate, scalable performance that identifies out-of-knowledge base individuals. Our approach significantly surpasses other entity disambiguation models on our historical newswire benchmark. Our models also demonstrate competitive performance on modern entity disambiguation benchmarks, particularly on certain news disambiguation datasets.
Social scientists and the general public often analyze contemporary events by drawing parallels with the past, a process complicated by the vast, noisy, and unstructured nature of historical texts. For example, hundreds of millions of page scans from historical newspapers have been noisily transcribed. Traditional sparse methods for searching for relevant material in these vast corpora, e.g., with keywords, can be brittle given complex vocabularies and OCR noise. This study introduces News Deja Vu, a novel semantic search tool that leverages transformer large language models and a bi-encoder approach to identify historical news articles that are most similar to modern news queries. News Deja Vu first recognizes and masks entities, in order to focus on broader parallels rather than the specific named entities being discussed. Then, a contrastively trained, lightweight bi-encoder retrieves historical articles that are most similar semantically to a modern query, illustrating how phenomena that might seem unique to the present have varied historical precedents. Aimed at social scientists, the user-friendly News Deja Vu package is designed to be accessible for those who lack extensive familiarity with deep learning. It works with large text datasets, and we show how it can be deployed to a massive scale corpus of historical, open-source news articles. While human expertise remains important for drawing deeper insights, News Deja Vu provides a powerful tool for exploring parallels in how people have perceived past and present.