Emma Kerinec


2018

pdf bib
When does deep multi-task learning work for loosely related document classification tasks?
Emma Kerinec | Chloé Braud | Anders Søgaard
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

This work aims to contribute to our understanding of when multi-task learning through parameter sharing in deep neural networks leads to improvements over single-task learning. We focus on the setting of learning from loosely related tasks, for which no theoretical guarantees exist. We therefore approach the question empirically, studying which properties of datasets and single-task learning characteristics correlate with improvements from multi-task learning. We are the first to study this in a text classification setting and across more than 500 different task pairs.