Emma Strubell


pdf bib
On the Benefit of Syntactic Supervision for Cross-lingual Transfer in Semantic Role Labeling
Zhisong Zhang | Emma Strubell | Eduard Hovy
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Although recent developments in neural architectures and pre-trained representations have greatly increased state-of-the-art model performance on fully-supervised semantic role labeling (SRL), the task remains challenging for languages where supervised SRL training data are not abundant. Cross-lingual learning can improve performance in this setting by transferring knowledge from high-resource languages to low-resource ones. Moreover, we hypothesize that annotations of syntactic dependencies can be leveraged to further facilitate cross-lingual transfer. In this work, we perform an empirical exploration of the helpfulness of syntactic supervision for crosslingual SRL within a simple multitask learning scheme. With comprehensive evaluations across ten languages (in addition to English) and three SRL benchmark datasets, including both dependency- and span-based SRL, we show the effectiveness of syntactic supervision in low-resource scenarios.

pdf bib
Comparing Span Extraction Methods for Semantic Role Labeling
Zhisong Zhang | Emma Strubell | Eduard Hovy
Proceedings of the 5th Workshop on Structured Prediction for NLP (SPNLP 2021)

In this work, we empirically compare span extraction methods for the task of semantic role labeling (SRL). While recent progress incorporating pre-trained contextualized representations into neural encoders has greatly improved SRL F1 performance on popular benchmarks, the potential costs and benefits of structured decoding in these models have become less clear. With extensive experiments on PropBank SRL datasets, we find that more structured decoding methods outperform BIO-tagging when using static (word type) embeddings across all experimental settings. However, when used in conjunction with pre-trained contextualized word representations, the benefits are diminished. We also experiment in cross-genre and cross-lingual settings and find similar trends. We further perform speed comparisons and provide analysis on the accuracy-efficiency trade-offs among different decoding methods.


pdf bib
Proceedings of the 5th Workshop on Representation Learning for NLP
Spandana Gella | Johannes Welbl | Marek Rei | Fabio Petroni | Patrick Lewis | Emma Strubell | Minjoon Seo | Hannaneh Hajishirzi
Proceedings of the 5th Workshop on Representation Learning for NLP


pdf bib
Energy and Policy Considerations for Deep Learning in NLP
Emma Strubell | Ananya Ganesh | Andrew McCallum
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Recent progress in hardware and methodology for training neural networks has ushered in a new generation of large networks trained on abundant data. These models have obtained notable gains in accuracy across many NLP tasks. However, these accuracy improvements depend on the availability of exceptionally large computational resources that necessitate similarly substantial energy consumption. As a result these models are costly to train and develop, both financially, due to the cost of hardware and electricity or cloud compute time, and environmentally, due to the carbon footprint required to fuel modern tensor processing hardware. In this paper we bring this issue to the attention of NLP researchers by quantifying the approximate financial and environmental costs of training a variety of recently successful neural network models for NLP. Based on these findings, we propose actionable recommendations to reduce costs and improve equity in NLP research and practice.

pdf bib
The Materials Science Procedural Text Corpus: Annotating Materials Synthesis Procedures with Shallow Semantic Structures
Sheshera Mysore | Zachary Jensen | Edward Kim | Kevin Huang | Haw-Shiuan Chang | Emma Strubell | Jeffrey Flanigan | Andrew McCallum | Elsa Olivetti
Proceedings of the 13th Linguistic Annotation Workshop

Materials science literature contains millions of materials synthesis procedures described in unstructured natural language text. Large-scale analysis of these synthesis procedures would facilitate deeper scientific understanding of materials synthesis and enable automated synthesis planning. Such analysis requires extracting structured representations of synthesis procedures from the raw text as a first step. To facilitate the training and evaluation of synthesis extraction models, we introduce a dataset of 230 synthesis procedures annotated by domain experts with labeled graphs that express the semantics of the synthesis sentences. The nodes in this graph are synthesis operations and their typed arguments, and labeled edges specify relations between the nodes. We describe this new resource in detail and highlight some specific challenges to annotating scientific text with shallow semantic structure. We make the corpus available to the community to promote further research and development of scientific information extraction systems.


pdf bib
Linguistically-Informed Self-Attention for Semantic Role Labeling
Emma Strubell | Patrick Verga | Daniel Andor | David Weiss | Andrew McCallum
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Current state-of-the-art semantic role labeling (SRL) uses a deep neural network with no explicit linguistic features. However, prior work has shown that gold syntax trees can dramatically improve SRL decoding, suggesting the possibility of increased accuracy from explicit modeling of syntax. In this work, we present linguistically-informed self-attention (LISA): a neural network model that combines multi-head self-attention with multi-task learning across dependency parsing, part-of-speech tagging, predicate detection and SRL. Unlike previous models which require significant pre-processing to prepare linguistic features, LISA can incorporate syntax using merely raw tokens as input, encoding the sequence only once to simultaneously perform parsing, predicate detection and role labeling for all predicates. Syntax is incorporated by training one attention head to attend to syntactic parents for each token. Moreover, if a high-quality syntactic parse is already available, it can be beneficially injected at test time without re-training our SRL model. In experiments on CoNLL-2005 SRL, LISA achieves new state-of-the-art performance for a model using predicted predicates and standard word embeddings, attaining 2.5 F1 absolute higher than the previous state-of-the-art on newswire and more than 3.5 F1 on out-of-domain data, nearly 10% reduction in error. On ConLL-2012 English SRL we also show an improvement of more than 2.5 F1. LISA also out-performs the state-of-the-art with contextually-encoded (ELMo) word representations, by nearly 1.0 F1 on news and more than 2.0 F1 on out-of-domain text.

pdf bib
Syntax Helps ELMo Understand Semantics: Is Syntax Still Relevant in a Deep Neural Architecture for SRL?
Emma Strubell | Andrew McCallum
Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP

Do unsupervised methods for learning rich, contextualized token representations obviate the need for explicit modeling of linguistic structure in neural network models for semantic role labeling (SRL)? We address this question by incorporating the massively successful ELMo embeddings (Peters et al., 2018) into LISA (Strubell and McCallum, 2018), a strong, linguistically-informed neural network architecture for SRL. In experiments on the CoNLL-2005 shared task we find that though ELMo out-performs typical word embeddings, beginning to close the gap in F1 between LISA with predicted and gold syntactic parses, syntactically-informed models still out-perform syntax-free models when both use ELMo, especially on out-of-domain data. Our results suggest that linguistic structures are indeed still relevant in this golden age of deep learning for NLP.

pdf bib
Simultaneously Self-Attending to All Mentions for Full-Abstract Biological Relation Extraction
Patrick Verga | Emma Strubell | Andrew McCallum
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Most work in relation extraction forms a prediction by looking at a short span of text within a single sentence containing a single entity pair mention. This approach often does not consider interactions across mentions, requires redundant computation for each mention pair, and ignores relationships expressed across sentence boundaries. These problems are exacerbated by the document- (rather than sentence-) level annotation common in biological text. In response, we propose a model which simultaneously predicts relationships between all mention pairs in a document. We form pairwise predictions over entire paper abstracts using an efficient self-attention encoder. All-pairs mention scores allow us to perform multi-instance learning by aggregating over mentions to form entity pair representations. We further adapt to settings without mention-level annotation by jointly training to predict named entities and adding a corpus of weakly labeled data. In experiments on two Biocreative benchmark datasets, we achieve state of the art performance on the Biocreative V Chemical Disease Relation dataset for models without external KB resources. We also introduce a new dataset an order of magnitude larger than existing human-annotated biological information extraction datasets and more accurate than distantly supervised alternatives.


pdf bib
Fast and Accurate Entity Recognition with Iterated Dilated Convolutions
Emma Strubell | Patrick Verga | David Belanger | Andrew McCallum
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Today when many practitioners run basic NLP on the entire web and large-volume traffic, faster methods are paramount to saving time and energy costs. Recent advances in GPU hardware have led to the emergence of bi-directional LSTMs as a standard method for obtaining per-token vector representations serving as input to labeling tasks such as NER (often followed by prediction in a linear-chain CRF). Though expressive and accurate, these models fail to fully exploit GPU parallelism, limiting their computational efficiency. This paper proposes a faster alternative to Bi-LSTMs for NER: Iterated Dilated Convolutional Neural Networks (ID-CNNs), which have better capacity than traditional CNNs for large context and structured prediction. Unlike LSTMs whose sequential processing on sentences of length N requires O(N) time even in the face of parallelism, ID-CNNs permit fixed-depth convolutions to run in parallel across entire documents. We describe a distinct combination of network structure, parameter sharing and training procedures that enable dramatic 14-20x test-time speedups while retaining accuracy comparable to the Bi-LSTM-CRF. Moreover, ID-CNNs trained to aggregate context from the entire document are more accurate than Bi-LSTM-CRFs while attaining 8x faster test time speeds.

pdf bib
Dependency Parsing with Dilated Iterated Graph CNNs
Emma Strubell | Andrew McCallum
Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing

Dependency parses are an effective way to inject linguistic knowledge into many downstream tasks, and many practitioners wish to efficiently parse sentences at scale. Recent advances in GPU hardware have enabled neural networks to achieve significant gains over the previous best models, these models still fail to leverage GPUs’ capability for massive parallelism due to their requirement of sequential processing of the sentence. In response, we propose Dilated Iterated Graph Convolutional Neural Networks (DIG-CNNs) for graph-based dependency parsing, a graph convolutional architecture that allows for efficient end-to-end GPU parsing. In experiments on the English Penn TreeBank benchmark, we show that DIG-CNNs perform on par with some of the best neural network parsers.


pdf bib
Multilingual Relation Extraction using Compositional Universal Schema
Patrick Verga | David Belanger | Emma Strubell | Benjamin Roth | Andrew McCallum
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies


pdf bib
Learning Dynamic Feature Selection for Fast Sequential Prediction
Emma Strubell | Luke Vilnis | Kate Silverstein | Andrew McCallum
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)