En-Shiun Lee


pdf bib
SIB-200: A Simple, Inclusive, and Big Evaluation Dataset for Topic Classification in 200+ Languages and Dialects
David Adelani | Hannah Liu | Xiaoyu Shen | Nikita Vassilyev | Jesujoba Alabi | Yanke Mao | Haonan Gao | En-Shiun Lee
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the progress in building multilingual language models, evaluation is often limited to a few languages with available datasets which excludes a large number of low-resource languages. In this paper, we create SIB-200—a large-scale open-sourced benchmark dataset for topic classification in 205 languages and dialects to address the lack of evaluation dataset for Natural Language Understanding (NLU). For many of the languages covered in SIB-200, this is the first publicly available evaluation dataset for NLU. The dataset is based on Flores-200 machine translation corpus. We annotated the English portion of the dataset and extended the sentence-level annotation to the remaining 204 languages covered in the corpus. Despite the simplicity of this task, our evaluation in full-supervised setting, cross-lingual transfer setting and prompting of large language model setting show that there is still a large gap between the performance of high-resource and low-resource languages when multilingual evaluation is scaled to numerous world languages. We found that languages unseen during the pre-training of multilingual language models, languages from under-represented families (like Nilotic and Altantic-Congo), and languages from the regions of Africa, Americas, Oceania and South East Asia, often have the lowest performance on our topic classification dataset. We hope our dataset %will encourages a more inclusive evaluation of multilingual language models on a more diverse set of languages.

pdf bib
Predicting Machine Translation Performance on Low-Resource Languages: The Role of Domain Similarity
Eric Khiu | Hasti Toossi | Jinyu Liu | Jiaxu Li | David Anugraha | Juan Flores | Leandro Roman | A. Seza Doğruöz | En-Shiun Lee
Findings of the Association for Computational Linguistics: EACL 2024

Fine-tuning and testing a multilingual large language model is a challenge for low-resource languages (LRLs) since it is an expensive process. While previous studies have predicted the performance of natural language processing (NLP) tasks using machine learning methods, they primarily focus on high-resource languages, overlooking LRLs and shifts across domains. Focusing on LRLs, we investigate three factors (the size of the fine-tuning corpus, domain similarity between fine-tuning and testing corpora, and language similarity between source and target languages), which can potentially impact the model performance by using classical regression models. Our results indicate that domain similarity has the most important impact on predicting the performance of Machine Translation models.


pdf bib
Pre-Trained Multilingual Sequence-to-Sequence Models: A Hope for Low-Resource Language Translation?
En-Shiun Lee | Sarubi Thillainathan | Shravan Nayak | Surangika Ranathunga | David Adelani | Ruisi Su | Arya McCarthy
Findings of the Association for Computational Linguistics: ACL 2022

What can pre-trained multilingual sequence-to-sequence models like mBART contribute to translating low-resource languages? We conduct a thorough empirical experiment in 10 languages to ascertain this, considering five factors: (1) the amount of fine-tuning data, (2) the noise in the fine-tuning data, (3) the amount of pre-training data in the model, (4) the impact of domain mismatch, and (5) language typology. In addition to yielding several heuristics, the experiments form a framework for evaluating the data sensitivities of machine translation systems. While mBART is robust to domain differences, its translations for unseen and typologically distant languages remain below 3.0 BLEU. In answer to our title’s question, mBART is not a low-resource panacea; we therefore encourage shifting the emphasis from new models to new data.