Enbo Zhao


pdf bib
“Is Whole Word Masking Always Better for Chinese BERT?”: Probing on Chinese Grammatical Error Correction
Yong Dai | Linyang Li | Cong Zhou | Zhangyin Feng | Enbo Zhao | Xipeng Qiu | Piji Li | Duyu Tang
Findings of the Association for Computational Linguistics: ACL 2022

Whole word masking (WWM), which masks all subwords corresponding to a word at once, makes a better English BERT model. For the Chinese language, however, there is no subword because each token is an atomic character. The meaning of a word in Chinese is different in that a word is a compositional unit consisting of multiple characters. Such difference motivates us to investigate whether WWM leads to better context understanding ability for Chinese BERT. To achieve this, we introduce two probing tasks related to grammatical error correction and ask pretrained models to revise or insert tokens in a masked language modeling manner. We construct a dataset including labels for 19,075 tokens in 10,448 sentences. We train three Chinese BERT models with standard character-level masking (CLM), WWM, and a combination of CLM and WWM, respectively. Our major findings are as follows: First, when one character needs to be inserted or replaced, the model trained with CLM performs the best. Second, when more than one character needs to be handled, WWM is the key to better performance. Finally, when being fine-tuned on sentence-level downstream tasks, models trained with different masking strategies perform comparably.


pdf bib
TexSmart: A System for Enhanced Natural Language Understanding
Lemao Liu | Haisong Zhang | Haiyun Jiang | Yangming Li | Enbo Zhao | Kun Xu | Linfeng Song | Suncong Zheng | Botong Zhou | Dick Zhu | Xiao Feng | Tao Chen | Tao Yang | Dong Yu | Feng Zhang | ZhanHui Kang | Shuming Shi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

This paper introduces TexSmart, a text understanding system that supports fine-grained named entity recognition (NER) and enhanced semantic analysis functionalities. Compared to most previous publicly available text understanding systems and tools, TexSmart holds some unique features. First, the NER function of TexSmart supports over 1,000 entity types, while most other public tools typically support several to (at most) dozens of entity types. Second, TexSmart introduces new semantic analysis functions like semantic expansion and deep semantic representation, that are absent in most previous systems. Third, a spectrum of algorithms (from very fast algorithms to those that are relatively slow but more accurate) are implemented for one function in TexSmart, to fulfill the requirements of different academic and industrial applications. The adoption of unsupervised or weakly-supervised algorithms is especially emphasized, with the goal of easily updating our models to include fresh data with less human annotation efforts.