Recent efforts to address hallucinations in Large Language Models (LLMs) have focused on attributed text generation, which supplements generated texts with citations of supporting sources for post-generation fact-checking and corrections. Yet, these citations often point to entire documents or paragraphs, burdening users with extensive verification work. In this paper, we introduce a locally-attributable text generation approach, prioritizing concise attributions. Our method, named “Attribute First, then Generate“, breaks down the conventional end-to-end generation process into three intuitive steps: content selection, sentence planning, and sequential sentence generation. By initially identifying relevant source segments (“select first“) and then conditioning the generation process on them (“then generate“), we ensure these segments also act as the output’s fine-grained attributions (“select“ becomes “attribute“). Tested on Multi-document Summarization and Long-form Question-answering, our method not only yields more concise citations than the baselines but also maintains - and in some cases enhances - both generation quality and attribution accuracy. Furthermore, it significantly reduces the time required for fact verification by human assessors.
Detecting semantic arguments of a predicate word has been conventionally modeled as a sentence-level task. The typical reader, however, perfectly interprets predicate-argument relations in a much wider context than just the sentence where the predicate was evoked. In this work, we reformulate the problem of argument detection through textual entailment to capture semantic relations across sentence boundaries. We propose a method that tests whether some semantic relation can be inferred from a full passage by first encoding it into a simple and standalone proposition and then testing for entailment against the passage. Our method does not require direct supervision, which is generally absent due to dataset scarcity, but instead builds on existing NLI and sentence-level SRL resources. Such a method can potentially explicate pragmatically understood relations into a set of explicit sentences. We demonstrate it on a recent document-level benchmark, outperforming some supervised methods and contemporary language models.
Tasks involving text generation based on multiple input texts, such as multi-document summarization, long-form question answering and contemporary dialogue applications, challenge models for their ability to properly consolidate partly-overlapping multi-text information. However, these tasks entangle the consolidation phase with the often subjective and ill-defined content selection requirement, impeding proper assessment of models’ consolidation capabilities. In this paper, we suggest revisiting the sentence union generation task as an effective well-defined testbed for assessing text consolidation capabilities, decoupling the consolidation challenge from subjective content selection. To support research on this task, we present refined annotation methodology and tools for crowdsourcing sentence union, create the largest union dataset to date and provide an analysis of its rich coverage of various consolidation aspects. We then propose a comprehensive evaluation protocol for union generation, including both human and automatic evaluation. Finally, as baselines, we evaluate state-of-the-art language models on the task, along with a detailed analysis of their capacity to address multi-text consolidation challenges and their limitations.
The recently introduced Controlled Text Reduction (CTR) task isolates the text generation step within typical summarization-style tasks. It does so by challenging models to generate coherent text conforming to pre-selected content within the input text (“highlights”). This framing enables increased modularity in summarization-like tasks, allowing to couple a single CTR model with various content-selection setups and modules. However, there are currently no reliable CTR models, while the performance of the existing baseline for the task is mediocre, falling short of practical utility. Here, we address this gap by introducing a high-quality, open-source CTR model that tackles two prior key limitations: inadequate enforcement of the content-preservation constraint, and suboptimal silver training data. Addressing these, we amplify the content-preservation constraint in both training, via RL, and inference, via a controlled decoding strategy. Further, we substantially improve the silver training data quality via GPT-4 distillation. Overall, pairing the distilled dataset with the highlight-adherence strategies yields marked gains over the current baseline, of up to 30 ROUGE-L points, providing a reliable CTR model for downstream use.
Producing a reduced version of a source text, as in generic or focused summarization, inherently involves two distinct subtasks: deciding on targeted content and generating a coherent text conveying it. While some popular approaches address summarization as a single end-to-end task, prominent works support decomposed modeling for individual subtasks. Further, semi-automated text reduction is also very appealing, where users may identify targeted content while models would generate a corresponding coherent summary.In this paper, we focus on the second subtask, of generating coherent text given pre-selected content. Concretely, we formalize Controlled Text Reduction as a standalone task, whose input is a source text with marked spans of targeted content (“highlighting”).A model then needs to generate a coherent text that includes all and only the target information.We advocate the potential of such models, both for modular fully-automatic summarization, as well as for semi-automated human-in-the-loop use cases.Facilitating proper research, we crowdsource high-quality dev and test datasets for the task. Further, we automatically generate a larger “silver” training dataset from available summarization benchmarks, leveraging a pretrained summary-source alignment model.Finally, employing these datasets, we present a supervised baseline model, showing promising results and insightful analyses.
Various works suggest the appeals of incorporating explicit semantic representations when addressing challenging realistic NLP scenarios. Common approaches offer either comprehensive linguistically-based formalisms, like AMR, or alternatively Open-IE, which provides a shallow and partial representation. More recently, an appealing trend introduces semi-structured natural-language structures as an intermediate meaning-capturing representation, often in the form of questions and answers.In this work, we further promote this line of research by considering three prior QA-based semantic representations. These cover verbal, nominalized and discourse-based predications, regarded as jointly providing a comprehensive representation of textual information — termed QASem. To facilitate this perspective, we investigate how to best utilize pre-trained sequence-to-sequence language models, which seem particularly promising for generating representations that consist of natural language expressions (questions and answers). In particular, we examine and analyze input and output linearization strategies, as well as data augmentation and multitask learning for a scarce training data setup. Consequently, we release the first unified QASem parsing tool, easily applicable for downstream tasks that can benefit from an explicit semi-structured account of information units in text.
We introduce iFᴀᴄᴇᴛSᴜᴍ, a web application for exploring topical document collections. iFᴀᴄᴇᴛSᴜᴍ integrates interactive summarization together with faceted search, by providing a novel faceted navigation scheme that yields abstractive summaries for the user’s selections. This approach offers both a comprehensive overview as well as particular details regard-ing subtopics of choice. The facets are automatically produced based on cross-document coreference pipelines, rendering generic concepts, entities and statements surfacing in the source texts. We analyze the effectiveness of our application through small-scale user studies that suggest the usefulness of our tool.