Eric Holgate


2021

pdf bib
“Politeness, you simpleton!” retorted [MASK]: Masked prediction of literary characters
Eric Holgate | Katrin Erk
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

What is the best way to learn embeddings for entities, and what can be learned from them? We consider this question for the case of literary characters. We address the highly challenging task of guessing, from a sentence in the novel, which character is being talked about, and we probe the embeddings to see what information they encode about their literary characters. We find that when continuously trained, entity embeddings do well at the masked entity prediction task, and that they encode considerable information about the traits and characteristics of the entities.

2018

pdf bib
Expressively vulgar: The socio-dynamics of vulgarity and its effects on sentiment analysis in social media
Isabel Cachola | Eric Holgate | Daniel Preoţiuc-Pietro | Junyi Jessy Li
Proceedings of the 27th International Conference on Computational Linguistics

Vulgarity is a common linguistic expression and is used to perform several linguistic functions. Understanding their usage can aid both linguistic and psychological phenomena as well as benefit downstream natural language processing applications such as sentiment analysis. This study performs a large-scale, data-driven empirical analysis of vulgar words using social media data. We analyze the socio-cultural and pragmatic aspects of vulgarity using tweets from users with known demographics. Further, we collect sentiment ratings for vulgar tweets to study the relationship between the use of vulgar words and perceived sentiment and show that explicitly modeling vulgar words can boost sentiment analysis performance.

pdf bib
Picking Apart Story Salads
Su Wang | Eric Holgate | Greg Durrett | Katrin Erk
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

During natural disasters and conflicts, information about what happened is often confusing and messy, and distributed across many sources. We would like to be able to automatically identify relevant information and assemble it into coherent narratives of what happened. To make this task accessible to neural models, we introduce Story Salads, mixtures of multiple documents that can be generated at scale. By exploiting the Wikipedia hierarchy, we can generate salads that exhibit challenging inference problems. Story salads give rise to a novel, challenging clustering task, where the objective is to group sentences from the same narratives. We demonstrate that simple bag-of-words similarity clustering falls short on this task, and that it is necessary to take into account global context and coherence.

pdf bib
Why Swear? Analyzing and Inferring the Intentions of Vulgar Expressions
Eric Holgate | Isabel Cachola | Daniel Preoţiuc-Pietro | Junyi Jessy Li
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Vulgar words are employed in language use for several different functions, ranging from expressing aggression to signaling group identity or the informality of the communication. This versatility of usage of a restricted set of words is challenging for downstream applications and has yet to be studied quantitatively or using natural language processing techniques. We introduce a novel data set of 7,800 tweets from users with known demographic traits where all instances of vulgar words are annotated with one of the six categories of vulgar word use. Using this data set, we present the first analysis of the pragmatic aspects of vulgarity and how they relate to social factors. We build a model able to predict the category of a vulgar word based on the immediate context it appears in with 67.4 macro F1 across six classes. Finally, we demonstrate the utility of modeling the type of vulgar word use in context by using this information to achieve state-of-the-art performance in hate speech detection on a benchmark data set.