Eric Michael Smith


pdf bib
Recipes for Building an Open-Domain Chatbot
Stephen Roller | Emily Dinan | Naman Goyal | Da Ju | Mary Williamson | Yinhan Liu | Jing Xu | Myle Ott | Eric Michael Smith | Y-Lan Boureau | Jason Weston
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we highlight other ingredients. Good conversation requires blended skills: providing engaging talking points, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent persona. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models and code publicly available. Human evaluations show our best models outperform existing approaches in multi-turn dialogue on engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.

pdf bib
Multi-Modal Open-Domain Dialogue
Kurt Shuster | Eric Michael Smith | Da Ju | Jason Weston
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent work in open-domain conversational agents has demonstrated that significant improvements in humanness and user preference can be achieved via massive scaling in both pre-training data and model size (Adiwardana et al., 2020; Roller et al., 2020). However, if we want to build agents with human-like abilities, we must expand beyond handling just text. A particularly important topic is the ability to see images and communicate about what is perceived. With the goal of getting humans to engage in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to human preference.


pdf bib
Can You Put it All Together: Evaluating Conversational Agents’ Ability to Blend Skills
Eric Michael Smith | Mary Williamson | Kurt Shuster | Jason Weston | Y-Lan Boureau
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Being engaging, knowledgeable, and empathetic are all desirable general qualities in a conversational agent. Previous work has introduced tasks and datasets that aim to help agents to learn those qualities in isolation and gauge how well they can express them. But rather than being specialized in one single quality, a good open-domain conversational agent should be able to seamlessly blend them all into one cohesive conversational flow. In this work, we investigate several ways to combine models trained towards isolated capabilities, ranging from simple model aggregation schemes that require minimal additional training, to various forms of multi-task training that encompass several skills at all training stages. We further propose a new dataset, BlendedSkillTalk, to analyze how these capabilities would mesh together in a natural conversation, and compare the performance of different architectures and training schemes. Our experiments show that multi-tasking over several tasks that focus on particular capabilities results in better blended conversation performance compared to models trained on a single skill, and that both unified or two-stage approaches perform well if they are constructed to avoid unwanted bias in skill selection or are fine-tuned on our new task.


pdf bib
Towards Empathetic Open-domain Conversation Models: A New Benchmark and Dataset
Hannah Rashkin | Eric Michael Smith | Margaret Li | Y-Lan Boureau
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

One challenge for dialogue agents is recognizing feelings in the conversation partner and replying accordingly, a key communicative skill. While it is straightforward for humans to recognize and acknowledge others’ feelings in a conversation, this is a significant challenge for AI systems due to the paucity of suitable publicly-available datasets for training and evaluation. This work proposes a new benchmark for empathetic dialogue generation and EmpatheticDialogues, a novel dataset of 25k conversations grounded in emotional situations. Our experiments indicate that dialogue models that use our dataset are perceived to be more empathetic by human evaluators, compared to models merely trained on large-scale Internet conversation data. We also present empirical comparisons of dialogue model adaptations for empathetic responding, leveraging existing models or datasets without requiring lengthy re-training of the full model.