Ethan Chau


2024

pdf bib
Dodo: Dynamic Contextual Compression for Decoder-only LMs
Guanghui Qin | Corby Rosset | Ethan Chau | Nikhil Rao | Benjamin Van Durme
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transformer-based language models (LMs) are inefficient in long contexts. We propose Dodo, a solution for context compression. Instead of one vector per token in a standard transformer model, Dodo represents text with a dynamic number of hidden states at each layer, reducing the cost of self-attention to a fraction of typical time and space. Moreover, off-the-shelf models such as LLaMA can be adapted to Dodo by efficient parameter tuning methods such as LoRA. In use, Dodo can act as either an autoregressive LM or a context compressor for downstream tasks. We demonstrate through experiments in language modeling, question answering, and summarization that Dodo retains capabilities in these tasks, while drastically reducing the overhead during decoding. For example, in the autoencoding task, Dodo shrinks context at a 20x compression ratio with a BLEU score of 98% for reconstruction, achieving nearly lossless encoding.

pdf bib
Automatic Pair Construction for Contrastive Post-training
Canwen Xu | Corby Rosset | Ethan Chau | Luciano Corro | Shweti Mahajan | Julian McAuley | Jennifer Neville | Ahmed Awadallah | Nikhil Rao
Findings of the Association for Computational Linguistics: NAACL 2024

Alignment serves as an important step to steer large language models (LLMs) towards human preferences. In this paper, we propose an automatic way to construct contrastive data for LLM, using preference pairs from multiple models of varying strengths (e.g., InstructGPT, ChatGPT and GPT-4). We compare the contrastive techniques of SLiC and DPO to SFT baselines and find that DPO provides a step-function improvement even after continuing SFT saturates. We also explore a data curriculum learning scheme for contrastive post-training, which starts by learning from “easier” pairs and transitioning to “harder” ones, which further improves alignment. Finally, we scale up our experiments to train with more data and larger models like Orca. Remarkably, our automatic contrastive post-training further improves the performance of Orca, already a state-of-the-art instruction learning model tuned with GPT-4 outputs, to outperform ChatGPT.