Ethan Perez


2023

pdf bib
Discovering Language Model Behaviors with Model-Written Evaluations
Ethan Perez | Sam Ringer | Kamile Lukosiute | Karina Nguyen | Edwin Chen | Scott Heiner | Craig Pettit | Catherine Olsson | Sandipan Kundu | Saurav Kadavath | Andy Jones | Anna Chen | Benjamin Mann | Brian Israel | Bryan Seethor | Cameron McKinnon | Christopher Olah | Da Yan | Daniela Amodei | Dario Amodei | Dawn Drain | Dustin Li | Eli Tran-Johnson | Guro Khundadze | Jackson Kernion | James Landis | Jamie Kerr | Jared Mueller | Jeeyoon Hyun | Joshua Landau | Kamal Ndousse | Landon Goldberg | Liane Lovitt | Martin Lucas | Michael Sellitto | Miranda Zhang | Neerav Kingsland | Nelson Elhage | Nicholas Joseph | Noemi Mercado | Nova DasSarma | Oliver Rausch | Robin Larson | Sam McCandlish | Scott Johnston | Shauna Kravec | Sheer El Showk | Tamera Lanham | Timothy Telleen-Lawton | Tom Brown | Tom Henighan | Tristan Hume | Yuntao Bai | Zac Hatfield-Dodds | Jack Clark | Samuel R. Bowman | Amanda Askell | Roger Grosse | Danny Hernandez | Deep Ganguli | Evan Hubinger | Nicholas Schiefer | Jared Kaplan
Findings of the Association for Computational Linguistics: ACL 2023

As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user’s preferred answer (“sycophancy”) and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.

pdf bib
Few-shot Adaptation Works with UnpredicTable Data
Jun Shern Chan | Michael Pieler | Jonathan Jao | Jérémy Scheurer | Ethan Perez
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prior work on language models (LMs) shows that training on a large number of diverse tasks improves few-shot learning (FSL) performance on new tasks. We take this to the extreme, automatically extracting 413,299 tasks from internet tables - orders of magnitude more than the next-largest public datasets. Finetuning on the resulting dataset leads to improved FSL performance on Natural Language Processing (NLP) tasks, but not proportionally to dataset scale. In fact, we find that narrow subsets of our dataset sometimes outperform more diverse datasets. For example, finetuning on software documentation from support.google.com raises FSL performance by a mean of +7.5% on 52 downstream tasks, which beats training on 40 human-curated NLP datasets (+6.7%). Finetuning on various narrow datasets leads to similar broad improvements across test tasks, suggesting that the gains are not from domain adaptation but adapting to FSL in general. We do not observe clear patterns between the datasets that lead to FSL gains, leaving open questions about why certain data helps with FSL.

2022

pdf bib
RL with KL penalties is better viewed as Bayesian inference
Tomasz Korbak | Ethan Perez | Christopher Buckley
Findings of the Association for Computational Linguistics: EMNLP 2022

Reinforcement learning (RL) is frequently employed in fine-tuning large language models (LMs), such as GPT-3, to penalize them for undesirable features of generated sequences, such as offensiveness, social bias, harmfulness or falsehood. The RL formulation involves treating the LM as a policy and updating it to maximise the expected value of a reward function which captures human preferences, such as non-offensiveness. In this paper, we analyze challenges associated with treating a language model as an RL policy and show how avoiding those challenges requires moving beyond the RL paradigm. We start by observing that the standard RL approach is flawed as an objective for fine-tuning LMs because it leads to distribution collapse: turning the LM into a degenerate distribution. Then, we analyze KL-regularised RL, a widely used recipe for fine-tuning LMs, which additionally constrains the fine-tuned LM to stay close to its original distribution in terms of Kullback-Leibler (KL) divergence. We show that KL-regularised RL is equivalent to variational inference: approximating a Bayesian posterior which specifies how to update a prior LM to conform with evidence provided by the reward function. We argue that this Bayesian inference view of KL-regularised RL is more insightful than the typically employed RL perspective. The Bayesian inference view explains how KL-regularised RL avoids the distribution collapse problem and offers a first-principles derivation for its objective. While this objective happens to be equivalent to RL (with a particular choice of parametric reward), there exist other objectives for fine-tuning LMs which are no longer equivalent to RL. That observation leads to a more general point: RL is not an adequate formal framework for problems such as fine-tuning language models. These problems are best viewed as Bayesian inference: approximating a pre-defined target distribution.

pdf bib
Red Teaming Language Models with Language Models
Ethan Perez | Saffron Huang | Francis Song | Trevor Cai | Roman Ring | John Aslanides | Amelia Glaese | Nat McAleese | Geoffrey Irving
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Language Models (LMs) often cannot be deployed because of their potential to harm users in hard-to-predict ways. Prior work identifies harmful behaviors before deployment by using human annotators to hand-write test cases. However, human annotation is expensive, limiting the number and diversity of test cases. In this work, we automatically find cases where a target LM behaves in a harmful way, by generating test cases (“red teaming”) using another LM. We evaluate the target LM’s replies to generated test questions using a classifier trained to detect offensive content, uncovering tens of thousands of offensive replies in a 280B parameter LM chatbot. We explore several methods, from zero-shot generation to reinforcement learning, for generating test cases with varying levels of diversity and difficulty. Furthermore, we use prompt engineering to control LM-generated test cases to uncover a variety of other harms, automatically finding groups of people that the chatbot discusses in offensive ways, personal and hospital phone numbers generated as the chatbot’s own contact info, leakage of private training data in generated text, and harms that occur over the course of a conversation. Overall, LM-based red teaming is one promising tool (among many needed) for finding and fixing diverse, undesirable LM behaviors before impacting users.

pdf bib
Single-Turn Debate Does Not Help Humans Answer Hard Reading-Comprehension Questions
Alicia Parrish | Harsh Trivedi | Ethan Perez | Angelica Chen | Nikita Nangia | Jason Phang | Samuel Bowman
Proceedings of the First Workshop on Learning with Natural Language Supervision

Current QA systems can generate reasonable-sounding yet false answers without explanation or evidence for the generated answer, which is especially problematic when humans cannot readily check the model’s answers. This presents a challenge for building trust in machine learning systems. We take inspiration from real-world situations where difficult questions are answered by considering opposing sides (see Irving et al., 2018). For multiple-choice QA examples, we build a dataset of single arguments for both a correct and incorrect answer option in a debate-style set-up as an initial step in training models to produce explanations for two candidate answers. We use long contexts—humans familiar with the context write convincing explanations for pre-selected correct and incorrect answers, and we test if those explanations allow humans who have not read the full context to more accurately determine the correct answer. We do not find that explanations in our set-up improve human accuracy, but a baseline condition shows that providing human-selected text snippets does improve accuracy. We use these findings to suggest ways of improving the debate set up for future data collection efforts.

2021

pdf bib
Case-based Reasoning for Natural Language Queries over Knowledge Bases
Rajarshi Das | Manzil Zaheer | Dung Thai | Ameya Godbole | Ethan Perez | Jay Yoon Lee | Lizhen Tan | Lazaros Polymenakos | Andrew McCallum
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

It is often challenging to solve a complex problem from scratch, but much easier if we can access other similar problems with their solutions — a paradigm known as case-based reasoning (CBR). We propose a neuro-symbolic CBR approach (CBR-KBQA) for question answering over large knowledge bases. CBR-KBQA consists of a nonparametric memory that stores cases (question and logical forms) and a parametric model that can generate a logical form for a new question by retrieving cases that are relevant to it. On several KBQA datasets that contain complex questions, CBR-KBQA achieves competitive performance. For example, on the CWQ dataset, CBR-KBQA outperforms the current state of the art by 11% on accuracy. Furthermore, we show that CBR-KBQA is capable of using new cases without any further training: by incorporating a few human-labeled examples in the case memory, CBR-KBQA is able to successfully generate logical forms containing unseen KB entities as well as relations.

2020

pdf bib
Unsupervised Question Decomposition for Question Answering
Ethan Perez | Patrick Lewis | Wen-tau Yih | Kyunghyun Cho | Douwe Kiela
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we take an unsupervised approach to produce sub-questions, also enabling us to leverage millions of questions from the internet. Specifically, we propose an algorithm for One-to-N Unsupervised Sequence transduction (ONUS) that learns to map one hard, multi-hop question to many simpler, single-hop sub-questions. We answer sub-questions with an off-the-shelf QA model and give the resulting answers to a recomposition model that combines them into a final answer. We show large QA improvements on HotpotQA over a strong baseline on the original, out-of-domain, and multi-hop dev sets. ONUS automatically learns to decompose different kinds of questions, while matching the utility of supervised and heuristic decomposition methods for QA and exceeding those methods in fluency. Qualitatively, we find that using sub-questions is promising for shedding light on why a QA system makes a prediction.

2019

pdf bib
ELI5: Long Form Question Answering
Angela Fan | Yacine Jernite | Ethan Perez | David Grangier | Jason Weston | Michael Auli
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We introduce the first large-scale corpus for long form question answering, a task requiring elaborate and in-depth answers to open-ended questions. The dataset comprises 270K threads from the Reddit forum “Explain Like I’m Five” (ELI5) where an online community provides answers to questions which are comprehensible by five year olds. Compared to existing datasets, ELI5 comprises diverse questions requiring multi-sentence answers. We provide a large set of web documents to help answer the question. Automatic and human evaluations show that an abstractive model trained with a multi-task objective outperforms conventional Seq2Seq, language modeling, as well as a strong extractive baseline. However, our best model is still far from human performance since raters prefer gold responses in over 86% of cases, leaving ample opportunity for future improvement.

pdf bib
Finding Generalizable Evidence by Learning to Convince Q&A Models
Ethan Perez | Siddharth Karamcheti | Rob Fergus | Jason Weston | Douwe Kiela | Kyunghyun Cho
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We propose a system that finds the strongest supporting evidence for a given answer to a question, using passage-based question-answering (QA) as a testbed. We train evidence agents to select the passage sentences that most convince a pretrained QA model of a given answer, if the QA model received those sentences instead of the full passage. Rather than finding evidence that convinces one model alone, we find that agents select evidence that generalizes; agent-chosen evidence increases the plausibility of the supported answer, as judged by other QA models and humans. Given its general nature, this approach improves QA in a robust manner: using agent-selected evidence (i) humans can correctly answer questions with only ~20% of the full passage and (ii) QA models can generalize to longer passages and harder questions.
Search
Co-authors