Eunbi Choi


2024

pdf bib
ListT5: Listwise Reranking with Fusion-in-Decoder Improves Zero-shot Retrieval
Soyoung Yoon | Eunbi Choi | Jiyeon Kim | Hyeongu Yun | Yireun Kim | Seung-won Hwang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We propose ListT5, a novel reranking approach based on Fusion-in-Decoder (FiD) that handles multiple candidate passages at both train and inference time. We also introduce an efficient inference framework for listwise ranking based on m-ary tournament sort with output caching. We evaluate and compare our model on the BEIR benchmark for zero-shot retrieval task, demonstrating that ListT5 (1) outperforms the state-of-the-art RankT5 baseline with a notable +1.3 gain in the average NDCG@10 score, (2) has an efficiency comparable to pointwise ranking models and surpasses the efficiency of previous listwise ranking models, and (3) overcomes the lost-in-the-middle problem of previous listwise rerankers. Our code, model checkpoints, and the evaluation framework will be fully open-sourced.

2023

pdf bib
Fixed Input Parameterization for Efficient Prompting
Eunbi Choi | Yongrae Jo | Joel Jang | Joonwon Jang | Minjoon Seo
Findings of the Association for Computational Linguistics: ACL 2023

Recent works have shown that attaching prompts to the input is effective at conditioning Language Models (LM) to perform specific tasks. However, prompts are always included in the input text during inference, even when they are fixed, thus incurring substantial computational and memory overhead. Also, there is currently no straightforward method of utilizing prompts that are longer than the maximum input length of the LMs without incurring additional costs during inference. We formally define Fixed Input Parameterization (FIP) problem that focuses on injecting the fixed prompt into the parameters of an LM to be an efficient alternative to attaching fixed prompts to the input. We show that in scenarios with long fixed prompts, FIP can be up to 280 times more efficient in terms of total FLOPs than previous approaches. We further explore methodologies for FIP and show promising results in persona-dependent conversation, semantic parsing, and zero-shot learning with task instructions. Through these explorations, we show that FIP can be a promising direction for conditioning language models, in scenarios with long and fixed prompts.