Eunjung Cho
2025
Hermit Kingdom Through the Lens of Multiple Perspectives: A Case Study of LLM Hallucination on North Korea
Eunjung Cho
|
Won Ik Cho
|
Soomin Seo
Proceedings of the 31st International Conference on Computational Linguistics
Hallucination in large language models (LLMs) remains a significant challenge for their safe deployment, particularly due to its potential to spread misinformation. Most existing solutions address this challenge by focusing on aligning the models with credible sources or by improving how models communicate their confidence (or lack thereof) in their outputs. While these measures may be effective in most contexts, they may fall short in scenarios requiring more nuanced approaches, especially in situations where access to accurate data is limited or determining credible sources is challenging. In this study, we take North Korea - a country characterised by an extreme lack of reliable sources and the prevalence of sensationalist falsehoods - as a case study. We explore and evaluate how some of the best-performing multilingual LLMs and specific language-based models generate information about North Korea in three languages spoken in countries with significant geo-political interests: English (United States, United Kingdom), Korean (South Korea), and Mandarin Chinese (China). Our findings reveal significant differences, suggesting that the choice of model and language can lead to vastly different understandings of North Korea, which has important implications given the global security challenges the country poses.
2024
Aligning Large Language Models with Diverse Political Viewpoints
Dominik Stammbach
|
Philine Widmer
|
Eunjung Cho
|
Caglar Gulcehre
|
Elliott Ash
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models such as ChatGPT exhibit striking political biases. If users query them about political information, they often take a normative stance. To overcome this, we align LLMs with diverse political viewpoints from 100,000 comments written by candidates running for national parliament in Switzerland. Models aligned with this data can generate more accurate political viewpoints from Swiss parties, compared to commercial models such as ChatGPT. We also propose a procedure to generate balanced overviews summarizing multiple viewpoints using such models. The replication package contains all code and data.
Search
Fix data
Co-authors
- Elliott Ash 1
- Won Ik Cho 1
- Çağlar Gu̇lçehre 1
- Soomin Seo 1
- Dominik Stammbach 1
- show all...