Agents powered by large language models (LLMs) inherit important limitations, such as the restricted context length, dependency on human-engineered exemplars (e.g., for task decomposition), and insufficient generalization. To address these challenges, we propose RaDA, a novel planning method for Web agents that does not require manual exemplars, efficiently leverages the LLMs’ context, and enhances generalization. RaDA disentangles planning into two stages: for a new given task, during Retrieval-augmented Task Decomposition (RaD), it decomposes tasks into high-level subtasks; next, during Retrieval-augmented Action Generation (RaA), it traverses the trajectory obtained with RaD to iteratively synthesize actions based on dynamically retrieved exemplars. We compare RaDA with strong baselines covering a broad space of design choices, using both GPT-3.5 and GPT-4 as backbones; and we find consistent improvements over previous SOTA in two challenging benchmarks, CompWoB and Mind2Web, covering settings with different complexities. We show the contributions of RaDA via ablation studies and qualitative analysis; and we discuss the structural benefits of our more compositional design.
Good figure captions help paper readers understand complex scientific figures. Unfortunately, even published papers often have poorly written captions. Automatic caption generation could aid paper writers by providing good starting captions that can be refined for better quality. Prior work often treated figure caption generation as a vision-to-language task. In this paper, we show that it can be more effectively tackled as a text summarization task in scientific documents. We fine-tuned PEGASUS, a pre-trained abstractive summarization model, to specifically summarize figure-referencing paragraphs (e.g., “Figure 3 shows...”) into figure captions. Experiments on large-scale arXiv figures show that our method outperforms prior vision methods in both automatic and human evaluations. We further conducted an in-depth investigation focused on two key challenges: (i) the common presence of low-quality author-written captions and (ii) the lack of clear standards for good captions. Our code and data are available at: https://github.com/Crowd-AI-Lab/Generating-Figure-Captions-as-a-Text-Summarization-Task.
Conversations aimed at determining good recommendations are iterative in nature. People often express their preferences in terms of a critique of the current recommendation (e.g., “It doesn’t look good for a date”), requiring some degree of common sense for a preference to be inferred. In this work, we present a method for transforming a user critique into a positive preference (e.g., “I prefer more romantic”) in order to retrieve reviews pertaining to potentially better recommendations (e.g., “Perfect for a romantic dinner”). We leverage a large neural language model (LM) in a few-shot setting to perform critique-to-preference transformation, and we test two methods for retrieving recommendations: one that matches embeddings, and another that fine-tunes an LM for the task. We instantiate this approach in the restaurant domain and evaluate it using a new dataset of restaurant critiques. In an ablation study, we show that utilizing critique-to-preference transformation improves recommendations, and that there are at least three general cases that explain this improved performance.