Evgenii Tsymbalov


2024

pdf bib
Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification
Ekaterina Fadeeva | Aleksandr Rubashevskii | Artem Shelmanov | Sergey Petrakov | Haonan Li | Hamdy Mubarak | Evgenii Tsymbalov | Gleb Kuzmin | Alexander Panchenko | Timothy Baldwin | Preslav Nakov | Maxim Panov
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output. Such hallucinations can be dangerous, as occasional factual inaccuracies in the generated text might be obscured by the rest of the output being generally factually correct, making it extremely hard for the users to spot them. Current services that leverage LLMs usually do not provide any means for detecting unreliable generations. Here, we aim to bridge this gap. In particular, we propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification. Uncertainty scores leverage information encapsulated in the output of a neural network or its layers to detect unreliable predictions, and we show that they can be used to fact-check the atomic claims in the LLM output. Moreover, we present a novel token-level uncertainty quantification method that removes the impact of uncertainty about what claim to generate on the current step and what surface form to use. Our method Claim Conditioned Probability (CCP) measures only the uncertainty of a particular claim value expressed by the model. Experiments on the task of biography generation demonstrate strong improvements for CCP compared to the baselines for seven different LLMs and four languages. Human evaluation reveals that the fact-checking pipeline based on uncertainty quantification is competitive with a fact-checking tool that leverages external knowledge.

2022

pdf bib
Uncertainty Estimation of Transformer Predictions for Misclassification Detection
Artem Vazhentsev | Gleb Kuzmin | Artem Shelmanov | Akim Tsvigun | Evgenii Tsymbalov | Kirill Fedyanin | Maxim Panov | Alexander Panchenko | Gleb Gusev | Mikhail Burtsev | Manvel Avetisian | Leonid Zhukov
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Uncertainty estimation (UE) of model predictions is a crucial step for a variety of tasks such as active learning, misclassification detection, adversarial attack detection, out-of-distribution detection, etc. Most of the works on modeling the uncertainty of deep neural networks evaluate these methods on image classification tasks. Little attention has been paid to UE in natural language processing. To fill this gap, we perform a vast empirical investigation of state-of-the-art UE methods for Transformer models on misclassification detection in named entity recognition and text classification tasks and propose two computationally efficient modifications, one of which approaches or even outperforms computationally intensive methods.

2021

pdf bib
How Certain is Your Transformer?
Artem Shelmanov | Evgenii Tsymbalov | Dmitri Puzyrev | Kirill Fedyanin | Alexander Panchenko | Maxim Panov
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

In this work, we consider the problem of uncertainty estimation for Transformer-based models. We investigate the applicability of uncertainty estimates based on dropout usage at the inference stage (Monte Carlo dropout). The series of experiments on natural language understanding tasks shows that the resulting uncertainty estimates improve the quality of detection of error-prone instances. Special attention is paid to the construction of computationally inexpensive estimates via Monte Carlo dropout and Determinantal Point Processes.