Evgeny Kim


pdf bib
GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception
Laura Ana Maria Bostan | Evgeny Kim | Roman Klinger
Proceedings of the Twelfth Language Resources and Evaluation Conference

Most research on emotion analysis from text focuses on the task of emotion classification or emotion intensity regression. Fewer works address emotions as a phenomenon to be tackled with structured learning, which can be explained by the lack of relevant datasets. We fill this gap by releasing a dataset of 5000 English news headlines annotated via crowdsourcing with their associated emotions, the corresponding emotion experiencers and textual cues, related emotion causes and targets, as well as the reader’s perception of the emotion of the headline. This annotation task is comparably challenging, given the large number of classes and roles to be identified. We therefore propose a multiphase annotation procedure in which we first find relevant instances with emotional content and then annotate the more fine-grained aspects. Finally, we develop a baseline for the task of automatic prediction of semantic role structures and discuss the results. The corpus we release enables further research on emotion classification, emotion intensity prediction, emotion cause detection, and supports further qualitative studies.

pdf bib
PO-EMO: Conceptualization, Annotation, and Modeling of Aesthetic Emotions in German and English Poetry
Thomas Haider | Steffen Eger | Evgeny Kim | Roman Klinger | Winfried Menninghaus
Proceedings of the Twelfth Language Resources and Evaluation Conference

Most approaches to emotion analysis of social media, literature, news, and other domains focus exclusively on basic emotion categories as defined by Ekman or Plutchik. However, art (such as literature) enables engagement in a broader range of more complex and subtle emotions. These have been shown to also include mixed emotional responses. We consider emotions in poetry as they are elicited in the reader, rather than what is expressed in the text or intended by the author. Thus, we conceptualize a set of aesthetic emotions that are predictive of aesthetic appreciation in the reader, and allow the annotation of multiple labels per line to capture mixed emotions within their context. We evaluate this novel setting in an annotation experiment both with carefully trained experts and via crowdsourcing. Our annotation with experts leads to an acceptable agreement of k = .70, resulting in a consistent dataset for future large scale analysis. Finally, we conduct first emotion classification experiments based on BERT, showing that identifying aesthetic emotions is challenging in our data, with up to .52 F1-micro on the German subset. Data and resources are available at https://github.com/tnhaider/poetry-emotion.


pdf bib
An Analysis of Emotion Communication Channels in Fan-Fiction: Towards Emotional Storytelling
Evgeny Kim | Roman Klinger
Proceedings of the Second Workshop on Storytelling

Centrality of emotion for the stories told by humans is underpinned by numerous studies in literature and psychology. The research in automatic storytelling has recently turned towards emotional storytelling, in which characters’ emotions play an important role in the plot development (Theune et al., 2004; y Perez, 2007; Mendez et al., 2016). However, these studies mainly use emotion to generate propositional statements in the form “A feels affection towards B” or “A confronts B”. At the same time, emotional behavior does not boil down to such propositional descriptions, as humans display complex and highly variable patterns in communicating their emotions, both verbally and non-verbally. In this paper, we analyze how emotions are expressed non-verbally in a corpus of fan fiction short stories. Our analysis shows that stories written by humans convey character emotions along various non-verbal channels. We find that some non-verbal channels, such as facial expressions and voice characteristics of the characters, are more strongly associated with joy, while gestures and body postures are more likely to occur with trust. Based on our analysis, we argue that automatic storytelling systems should take variability of emotion into account when generating descriptions of characters’ emotions.

pdf bib
Frowning Frodo, Wincing Leia, and a Seriously Great Friendship: Learning to Classify Emotional Relationships of Fictional Characters
Evgeny Kim | Roman Klinger
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

The development of a fictional plot is centered around characters who closely interact with each other forming dynamic social networks. In literature analysis, such networks have mostly been analyzed without particular relation types or focusing on roles which the characters take with respect to each other. We argue that an important aspect for the analysis of stories and their development is the emotion between characters. In this paper, we combine these aspects into a unified framework to classify emotional relationships of fictional characters. We formalize it as a new task and describe the annotation of a corpus, based on fan-fiction short stories. The extraction pipeline which we propose consists of character identification (which we treat as given by an oracle here) and the relation classification. For the latter, we provide results using several approaches previously proposed for relation identification with neural methods. The best result of 0.45 F1 is achieved with a GRU with character position indicators on the task of predicting undirected emotion relations in the associated social network graph.


pdf bib
Who Feels What and Why? Annotation of a Literature Corpus with Semantic Roles of Emotions
Evgeny Kim | Roman Klinger
Proceedings of the 27th International Conference on Computational Linguistics

Most approaches to emotion analysis in fictional texts focus on detecting the emotion expressed in text. We argue that this is a simplification which leads to an overgeneralized interpretation of the results, as it does not take into account who experiences an emotion and why. Emotions play a crucial role in the interaction between characters and the events they are involved in. Until today, no specific corpora that capture such an interaction were available for literature. We aim at filling this gap and present a publicly available corpus based on Project Gutenberg, REMAN (Relational EMotion ANnotation), manually annotated for spans which correspond to emotion trigger phrases and entities/events in the roles of experiencers, targets, and causes of the emotion. We provide baseline results for the automatic prediction of these relational structures and show that emotion lexicons are not able to encompass the high variability of emotion expressions and demonstrate that statistical models benefit from joint modeling of emotions with its roles in all subtasks. The corpus that we provide enables future research on the recognition of emotions and associated entities in text. It supports qualitative literary studies and digital humanities. The corpus is available at http://www.ims.uni-stuttgart.de/data/reman .


pdf bib
Investigating the Relationship between Literary Genres and Emotional Plot Development
Evgeny Kim | Sebastian Padó | Roman Klinger
Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

Literary genres are commonly viewed as being defined in terms of content and stylistic features. In this paper, we focus on one particular class of lexical features, namely emotion information, and investigate the hypothesis that emotion-related information correlates with particular genres. Using genre classification as a testbed, we compare a model that computes lexicon-based emotion scores globally for complete stories with a model that tracks emotion arcs through stories on a subset of Project Gutenberg with five genres. Our main findings are: (a), the global emotion model is competitive with a large-vocabulary bag-of-words genre classifier (80%F1); (b), the emotion arc model shows a lower performance (59 % F1) but shows complementary behavior to the global model, as indicated by a very good performance of an oracle model (94 % F1) and an improved performance of an ensemble model (84 % F1); (c), genres differ in the extent to which stories follow the same emotional arcs, with particularly uniform behavior for anger (mystery) and fear (adventures, romance, humor, science fiction).

pdf bib
IMS at EmoInt-2017: Emotion Intensity Prediction with Affective Norms, Automatically Extended Resources and Deep Learning
Maximilian Köper | Evgeny Kim | Roman Klinger
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Our submission to the WASSA-2017 shared task on the prediction of emotion intensity in tweets is a supervised learning method with extended lexicons of affective norms. We combine three main information sources in a random forrest regressor, namely (1), manually created resources, (2) automatically extended lexicons, and (3) the output of a neural network (CNN-LSTM) for sentence regression. All three feature sets perform similarly well in isolation (≈ .67 macro average Pearson correlation). The combination achieves .72 on the official test set (ranked 2nd out of 22 participants). Our analysis reveals that performance is increased by providing cross-emotional intensity predictions. The automatic extension of lexicon features benefit from domain specific embeddings. Complementary ratings for affective norms increase the impact of lexicon features. Our resources (ratings for 1.6 million twitter specific words) and our implementation is publicly available at http://www.ims.uni-stuttgart.de/data/ims_emoint.