Faegheh Hasibi
2024
Real World Conversational Entity Linking Requires More Than Zero-Shots
Mohanna Hoveyda
|
Arjen Vries
|
Faegheh Hasibi
|
Maarten de Rijke
Findings of the Association for Computational Linguistics: ACL 2024
Entity linking (EL) in conversations faces notable challenges in practical applications, primarily due to scarcity of entity-annotated conversational datasets and sparse knowledge bases (KB) containing domain-specific, long-tail entities. We designed targeted evaluation scenarios to measure the efficacy of EL models under resource constraints. Our evaluation employs two KBs: Fandom, exemplifying real-world EL complexities, and the widely used Wikipedia. First, we assess EL models’ ability to generalize to a new unfamiliar KB using Fandom and a novel zero-shot conversational entity linking dataset that we curated based on Reddit discussions on Fandom entities. We then evaluate the adaptability of EL models to conversational settings without prior training. Our results indicate that current zero-shot EL models falter when introduced to new, domain-specific KBs without prior training, significantly dropping in performance.Our findings reveal that previous evaluation approaches fall short of capturing real-world complexities for zero-shot EL, highlighting the necessity for new approaches to design and assess conversational EL models to adapt to limited resources. The evaluation frame-work and dataset proposed are tailored to facilitate this research.
Generate then Refine: Data Augmentation for Zero-shot Intent Detection
I-Fan Lin
|
Faegheh Hasibi
|
Suzan Verberne
Findings of the Association for Computational Linguistics: EMNLP 2024
In this short paper we propose a data augmentation method for intent detection in zero-resource domains.Existing data augmentation methods rely on few labelled examples for each intent category, which can be expensive in settings with many possible intents.We use a two-stage approach: First, we generate utterances for intent labels using an open-source large language model in a zero-shot setting. Second, we develop a smaller sequence-to-sequence model (the Refiner), to improve the generated utterances. The Refiner is fine-tuned on seen domains and then applied to unseen domains. We evaluate our method by training an intent classifier on the generated data, and evaluating it on real (human) data.We find that the Refiner significantly improves the data utility and diversity over the zero-shot LLM baseline for unseen domains and over common baseline approaches.Our results indicate that a two-step approach of a generative LLM in zero-shot setting and a smaller sequence-to-sequence model can provide high-quality data for intent detection.
2022
Find the Funding: Entity Linking with Incomplete Funding Knowledge Bases
Gizem Aydin
|
Seyed Amin Tabatabaei
|
George Tsatsaronis
|
Faegheh Hasibi
Proceedings of the 29th International Conference on Computational Linguistics
Automatic extraction of funding information from academic articles adds significant value to industry and research communities, including tracking research outcomes by funding organizations, profiling researchers and universities based on the received funding, and supporting open access policies. Two major challenges of identifying and linking funding entities are: (i) sparse graph structure of the Knowledge Base (KB), which makes the commonly used graph-based entity linking approaches suboptimal for the funding domain, (ii) missing entities in KB, which (unlike recent zero-shot approaches) requires marking entity mentions without KB entries as NIL. We propose an entity linking model that can perform NIL prediction and overcome data scarcity issues in a time and data-efficient manner. Our model builds on a transformer-based mention detection and a bi-encoder model to perform entity linking. We show that our model outperforms strong existing baselines.
Search
Fix data
Co-authors
- Gizem Aydin 1
- Mohanna Hoveyda 1
- I-Fan Lin 1
- Seyed Amin Tabatabaei 1
- George Tsatsaronis 1
- show all...