Fahim Dalvi


2024

pdf bib
Latent Concept-based Explanation of NLP Models
Xuemin Yu | Fahim Dalvi | Nadir Durrani | Marzia Nouri | Hassan Sajjad
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Interpreting and understanding the predictions made by deep learning models poses a formidable challenge due to their inherently opaque nature. Many previous efforts aimed at explaining these predictions rely on input features, specifically, the words within NLP models. However, such explanations are often less informative due to the discrete nature of these words and their lack of contextual verbosity. To address this limitation, we introduce the Latent Concept Attribution method (LACOAT), which generates explanations for predictions based on latent concepts. Our foundational intuition is that a word can exhibit multiple facets, contingent upon the context in which it is used. Therefore, given a word in context, the latent space derived from our training process reflects a specific facet of that word. LACOAT functions by mapping the representations of salient input words into the training latent space, allowing it to provide latent context-based explanations of the prediction.

pdf bib
LAraBench: Benchmarking Arabic AI with Large Language Models
Ahmed Abdelali | Hamdy Mubarak | Shammur Chowdhury | Maram Hasanain | Basel Mousi | Sabri Boughorbel | Samir Abdaljalil | Yassine El Kheir | Daniel Izham | Fahim Dalvi | Majd Hawasly | Nizi Nazar | Youssef Elshahawy | Ahmed Ali | Nadir Durrani | Natasa Milic-Frayling | Firoj Alam
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in Large Language Models (LLMs) have significantly influenced the landscape of language and speech research. Despite this progress, these models lack specific benchmarking against state-of-the-art (SOTA) models tailored to particular languages and tasks. LAraBench addresses this gap for Arabic Natural Language Processing (NLP) and Speech Processing tasks, including sequence tagging and content classification across different domains. We utilized models such as GPT-3.5-turbo, GPT-4, BLOOMZ, Jais-13b-chat, Whisper, and USM, employing zero and few-shot learning techniques to tackle 33 distinct tasks across 61 publicly available datasets. This involved 98 experimental setups, encompassing ~296K data points, ~46 hours of speech, and 30 sentences for Text-to-Speech (TTS). This effort resulted in 330+ sets of experiments. Our analysis focused on measuring the performance gap between SOTA models and LLMs. The overarching trend observed was that SOTA models generally outperformed LLMs in zero-shot learning, with a few exceptions. Notably, larger computational models with few-shot learning techniques managed to reduce these performance gaps. Our findings provide valuable insights into the applicability of LLMs for Arabic NLP and speech processing tasks.

pdf bib
Scaling up Discovery of Latent Concepts in Deep NLP Models
Majd Hawasly | Fahim Dalvi | Nadir Durrani
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the revolution caused by deep NLP models, they remain black boxes, necessitating research to understand their decision-making processes. A recent work by Dalvi et al. (2022) carried out representation analysis through the lens of clustering latent spaces within pre-trained models (PLMs), but that approach is limited to small scale due to the high cost of running Agglomerative hierarchical clustering. This paper studies clustering algorithms in order to scale the discovery of encoded concepts in PLM representations to larger datasets and models. We propose metrics for assessing the quality of discovered latent concepts and use them to compare the studied clustering algorithms. We found that K-Means-based concept discovery significantly enhances efficiency while maintaining the quality of the obtained concepts. Furthermore, we demonstrate the practicality of this newfound efficiency by scaling latent concept discovery to LLMs and phrasal concepts.

pdf bib
LLMeBench: A Flexible Framework for Accelerating LLMs Benchmarking
Fahim Dalvi | Maram Hasanain | Sabri Boughorbel | Basel Mousi | Samir Abdaljalil | Nizi Nazar | Ahmed Abdelali | Shammur Absar Chowdhury | Hamdy Mubarak | Ahmed Ali | Majd Hawasly | Nadir Durrani | Firoj Alam
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

The recent development and success of Large Language Models (LLMs) necessitate an evaluation of their performance across diverse NLP tasks in different languages. Although several frameworks have been developed and made publicly available, their customization capabilities for specific tasks and datasets are often complex for different users. In this study, we introduce the LLMeBench framework, which can be seamlessly customized to evaluate LLMs for any NLP task, regardless of language. The framework features generic dataset loaders, several model providers, and pre-implements most standard evaluation metrics. It supports in-context learning with zero- and few-shot settings. A specific dataset and task can be evaluated for a given LLM in less than 20 lines of code while allowing full flexibility to extend the framework for custom datasets, models, or tasks. The framework has been tested on 31 unique NLP tasks using 53 publicly available datasets within 90 experimental setups, involving approximately 296K data points. We open-sourced LLMeBench for the community (https://github.com/qcri/LLMeBench/) and a video demonstrating the framework is available online (https://youtu.be/9cC2m_abk3A).

pdf bib
Exploring Alignment in Shared Cross-lingual Spaces
Basel Mousi | Nadir Durrani | Fahim Dalvi | Majd Hawasly | Ahmed Abdelali
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite their remarkable ability to capture linguistic nuances across diverse languages, questions persist regarding the degree of alignment between languages in multilingual embeddings. Drawing inspiration from research on high-dimensional representations in neural language models, we employ clustering to uncover latent concepts within multilingual models. Our analysis focuses on quantifying the alignment and overlap of these concepts across various languages within the latent space. To this end, we introduce two metrics CALIGN and COLAP aimed at quantifying these aspects, enabling a deeper exploration of multilingual embeddings. Our study encompasses three multilingual models (mT5, mBERT, and XLM-R) and three downstream tasks (Machine Translation, Named Entity Recognition, and Sentiment Analysis). Key findings from our analysis include: i) deeper layers in the network demonstrate increased cross-lingual alignment due to the presence of language-agnostic concepts, ii) fine-tuning of the models enhances alignment within the latent space, and iii) such task-specific calibration helps in explaining the emergence of zero-shot capabilities in the models.

2023

pdf bib
NeuroX Library for Neuron Analysis of Deep NLP Models
Fahim Dalvi | Hassan Sajjad | Nadir Durrani
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Neuron analysis provides insights into how knowledge is structured in representations and discovers the role of neurons in the network. In addition to developing an understanding of our models, neuron analysis enables various applications such as debiasing, domain adaptation and architectural search. We present NeuroX, a comprehensive open-source toolkit to conduct neuron analysis of natural language processing models. It implements various interpretation methods under a unified API, and provides a framework for data processing and evaluation, thus making it easier for researchers and practitioners to perform neuron analysis. The Python toolkit is available at https://www.github.com/fdalvi/NeuroX.Demo Video available at: https://youtu.be/mLhs2YMx4u8

pdf bib
Can LLMs Facilitate Interpretation of Pre-trained Language Models?
Basel Mousi | Nadir Durrani | Fahim Dalvi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Work done to uncover the knowledge encoded within pre-trained language models rely on annotated corpora or human-in-the-loop methods. However, these approaches are limited in terms of scalability and the scope of interpretation. We propose using a large language model, ChatGPT, as an annotator to enable fine-grained interpretation analysis of pre-trained language models. We discover latent concepts within pre-trained language models by applying agglomerative hierarchical clustering over contextualized representations and then annotate these concepts using ChatGPT. Our findings demonstrate that ChatGPT produces accurate and semantically richer annotations compared to human-annotated concepts. Additionally, we showcase how GPT-based annotations empower interpretation analysis methodologies of which we demonstrate two: probing frameworks and neuron interpretation. To facilitate further exploration and experimentation in the field, we make available a substantial ConceptNet dataset (TCN) comprising 39,000 annotated concepts.

pdf bib
NxPlain: A Web-based Tool for Discovery of Latent Concepts
Fahim Dalvi | Nadir Durrani | Hassan Sajjad | Tamim Jaban | Mus’ab Husaini | Ummar Abbas
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

The proliferation of deep neural networks in various domains has seen an increased need for the interpretability of these models, especially in scenarios where fairness and trust are as important as model performance. A lot of independent work is being carried out to: i) analyze what linguistic and non-linguistic knowledge is learned within these models, and ii) highlight the salient parts of the input. We present NxPlain, a web-app that provides an explanation of a model’s prediction using latent concepts. NxPlain discovers latent concepts learned in a deep NLP model, provides an interpretation of the knowledge learned in the model, and explains its predictions based on the used concepts. The application allows users to browse through the latent concepts in an intuitive order, letting them efficiently scan through the most salient concepts with a global corpus-level view and a local sentence-level view. Our tool is useful for debugging, unraveling model bias, and for highlighting spurious correlations in a model. A hosted demo is available here: https://nxplain.qcri.org

2022

pdf bib
Analyzing Encoded Concepts in Transformer Language Models
Hassan Sajjad | Nadir Durrani | Fahim Dalvi | Firoj Alam | Abdul Khan | Jia Xu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a novel framework ConceptX, to analyze how latent concepts are encoded in representations learned within pre-trained lan-guage models. It uses clustering to discover the encoded concepts and explains them by aligning with a large set of human-defined concepts. Our analysis on seven transformer language models reveal interesting insights: i) the latent space within the learned representations overlap with different linguistic concepts to a varying degree, ii) the lower layers in the model are dominated by lexical concepts (e.g., affixation) and linguistic ontologies (e.g. Word-Net), whereas the core-linguistic concepts (e.g., morphology, syntactic relations) are better represented in the middle and higher layers, iii) some encoded concepts are multi-faceted and cannot be adequately explained using the existing human-defined concepts.

pdf bib
Post-hoc analysis of Arabic transformer models
Ahmed Abdelali | Nadir Durrani | Fahim Dalvi | Hassan Sajjad
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Arabic is a Semitic language which is widely spoken with many dialects. Given the success of pre-trained language models, many transformer models trained on Arabic and its dialects have surfaced. While there have been an extrinsic evaluation of these models with respect to downstream NLP tasks, no work has been carried out to analyze and compare their internal representations. We probe how linguistic information is encoded in the transformer models, trained on different Arabic dialects. We perform a layer and neuron analysis on the models using morphological tagging tasks for different dialects of Arabic and a dialectal identification task. Our analysis enlightens interesting findings such as: i) word morphology is learned at the lower and middle layers, ii) while syntactic dependencies are predominantly captured at the higher layers, iii) despite a large overlap in their vocabulary, the MSA-based models fail to capture the nuances of Arabic dialects, iv) we found that neurons in embedding layers are polysemous in nature, while the neurons in middle layers are exclusive to specific properties.

pdf bib
On the Transformation of Latent Space in Fine-Tuned NLP Models
Nadir Durrani | Hassan Sajjad | Fahim Dalvi | Firoj Alam
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We study the evolution of latent space in fine-tuned NLP models. Different from the commonly used probing-framework, we opt for an unsupervised method to analyze representations. More specifically, we discover latent concepts in the representational space using hierarchical clustering. We then use an alignment function to gauge the similarity between the latent space of a pre-trained model and its fine-tuned version. We use traditional linguistic concepts to facilitate our understanding and also study how the model space transforms towards task-specific information. We perform a thorough analysis, comparing pre-trained and fine-tuned models across three models and three downstream tasks. The notable findings of our work are: i) the latent space of the higher layers evolve towards task-specific concepts, ii) whereas the lower layers retain generic concepts acquired in the pre-trained model, iii) we discovered that some concepts in the higher layers acquire polarity towards the output class, and iv) that these concepts can be used for generating adversarial triggers.

pdf bib
NatiQ: An End-to-end Text-to-Speech System for Arabic
Ahmed Abdelali | Nadir Durrani | Cenk Demiroglu | Fahim Dalvi | Hamdy Mubarak | Kareem Darwish
Proceedings of the Seventh Arabic Natural Language Processing Workshop (WANLP)

NatiQ is end-to-end text-to-speech system for Arabic. Our speech synthesizer uses an encoder-decoder architecture with attention. We used both tacotron-based models (tacotron- 1 and tacotron-2) and the faster transformer model for generating mel-spectrograms from characters. We concatenated Tacotron1 with the WaveRNN vocoder, Tacotron2 with the WaveGlow vocoder and ESPnet transformer with the parallel wavegan vocoder to synthesize waveforms from the spectrograms. We used in-house speech data for two voices: 1) neu- tral male “Hamza”- narrating general content and news, and 2) expressive female “Amina”- narrating children story books to train our models. Our best systems achieve an aver- age Mean Opinion Score (MOS) of 4.21 and 4.40 for Amina and Hamza respectively. The objective evaluation of the systems using word and character error rate (WER and CER) as well as the response time measured by real- time factor favored the end-to-end architecture ESPnet. NatiQ demo is available online at https://tts.qcri.org.

pdf bib
Neuron-level Interpretation of Deep NLP Models: A Survey
Hassan Sajjad | Nadir Durrani | Fahim Dalvi
Transactions of the Association for Computational Linguistics, Volume 10

The proliferation of Deep Neural Networks in various domains has seen an increased need for interpretability of these models. Preliminary work done along this line, and papers that surveyed such, are focused on high-level representation analysis. However, a recent branch of work has concentrated on interpretability at a more granular level of analyzing neurons within these models. In this paper, we survey the work done on neuron analysis including: i) methods to discover and understand neurons in a network; ii) evaluation methods; iii) major findings including cross architectural comparisons that neuron analysis has unraveled; iv) applications of neuron probing such as: controlling the model, domain adaptation, and so forth; and v) a discussion on open issues and future research directions.

pdf bib
Effect of Post-processing on Contextualized Word Representations
Hassan Sajjad | Firoj Alam | Fahim Dalvi | Nadir Durrani
Proceedings of the 29th International Conference on Computational Linguistics

Post-processing of static embedding has been shown to improve their performance on both lexical and sequence-level tasks. However, post-processing for contextualized embeddings is an under-studied problem. In this work, we question the usefulness of post-processing for contextualized embeddings obtained from different layers of pre-trained language models. More specifically, we standardize individual neuron activations using z-score, min-max normalization, and by removing top principal components using the all-but-the-top method. Additionally, we apply unit length normalization to word representations. On a diverse set of pre-trained models, we show that post-processing unwraps vital information present in the representations for both lexical tasks (such as word similarity and analogy) and sequence classification tasks. Our findings raise interesting points in relation to the research studies that use contextualized representations, and suggest z-score normalization as an essential step to consider when using them in an application.

2021

pdf bib
Fine-grained Interpretation and Causation Analysis in Deep NLP Models
Hassan Sajjad | Narine Kokhlikyan | Fahim Dalvi | Nadir Durrani
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorials

Deep neural networks have constantly pushed the state-of-the-art performance in natural language processing and are considered as the de-facto modeling approach in solving complex NLP tasks such as machine translation, summarization and question-answering. Despite the proven efficacy of deep neural networks at-large, their opaqueness is a major cause of concern. In this tutorial, we will present research work on interpreting fine-grained components of a neural network model from two perspectives, i) fine-grained interpretation, and ii) causation analysis. The former is a class of methods to analyze neurons with respect to a desired language concept or a task. The latter studies the role of neurons and input features in explaining the decisions made by the model. We will also discuss how interpretation methods and causation analysis can connect towards better interpretability of model prediction. Finally, we will walk you through various toolkits that facilitate fine-grained interpretation and causation analysis of neural models.

pdf bib
How transfer learning impacts linguistic knowledge in deep NLP models?
Nadir Durrani | Hassan Sajjad | Fahim Dalvi
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Fighting the COVID-19 Infodemic: Modeling the Perspective of Journalists, Fact-Checkers, Social Media Platforms, Policy Makers, and the Society
Firoj Alam | Shaden Shaar | Fahim Dalvi | Hassan Sajjad | Alex Nikolov | Hamdy Mubarak | Giovanni Da San Martino | Ahmed Abdelali | Nadir Durrani | Kareem Darwish | Abdulaziz Al-Homaid | Wajdi Zaghouani | Tommaso Caselli | Gijs Danoe | Friso Stolk | Britt Bruntink | Preslav Nakov
Findings of the Association for Computational Linguistics: EMNLP 2021

With the emergence of the COVID-19 pandemic, the political and the medical aspects of disinformation merged as the problem got elevated to a whole new level to become the first global infodemic. Fighting this infodemic has been declared one of the most important focus areas of the World Health Organization, with dangers ranging from promoting fake cures, rumors, and conspiracy theories to spreading xenophobia and panic. Addressing the issue requires solving a number of challenging problems such as identifying messages containing claims, determining their check-worthiness and factuality, and their potential to do harm as well as the nature of that harm, to mention just a few. To address this gap, we release a large dataset of 16K manually annotated tweets for fine-grained disinformation analysis that (i) focuses on COVID-19, (ii) combines the perspectives and the interests of journalists, fact-checkers, social media platforms, policy makers, and society, and (iii) covers Arabic, Bulgarian, Dutch, and English. Finally, we show strong evaluation results using pretrained Transformers, thus confirming the practical utility of the dataset in monolingual vs. multilingual, and single task vs. multitask settings.

2020

pdf bib
AraBench: Benchmarking Dialectal Arabic-English Machine Translation
Hassan Sajjad | Ahmed Abdelali | Nadir Durrani | Fahim Dalvi
Proceedings of the 28th International Conference on Computational Linguistics

Low-resource machine translation suffers from the scarcity of training data and the unavailability of standard evaluation sets. While a number of research efforts target the former, the unavailability of evaluation benchmarks remain a major hindrance in tracking the progress in low-resource machine translation. In this paper, we introduce AraBench, an evaluation suite for dialectal Arabic to English machine translation. Compared to Modern Standard Arabic, Arabic dialects are challenging due to their spoken nature, non-standard orthography, and a large variation in dialectness. To this end, we pool together already available Dialectal Arabic-English resources and additionally build novel test sets. AraBench offers 4 coarse, 15 fine-grained and 25 city-level dialect categories, belonging to diverse genres, such as media, chat, religion and travel with varying level of dialectness. We report strong baselines using several training settings: fine-tuning, back-translation and data augmentation. The evaluation suite opens a wide range of research frontiers to push efforts in low-resource machine translation, particularly Arabic dialect translation. The evaluation suite and the dialectal system are publicly available for research purposes.

pdf bib
Similarity Analysis of Contextual Word Representation Models
John Wu | Yonatan Belinkov | Hassan Sajjad | Nadir Durrani | Fahim Dalvi | James Glass
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

This paper investigates contextual word representation models from the lens of similarity analysis. Given a collection of trained models, we measure the similarity of their internal representations and attention. Critically, these models come from vastly different architectures. We use existing and novel similarity measures that aim to gauge the level of localization of information in the deep models, and facilitate the investigation of which design factors affect model similarity, without requiring any external linguistic annotation. The analysis reveals that models within the same family are more similar to one another, as may be expected. Surprisingly, different architectures have rather similar representations, but different individual neurons. We also observed differences in information localization in lower and higher layers and found that higher layers are more affected by fine-tuning on downstream tasks.

pdf bib
On the Linguistic Representational Power of Neural Machine Translation Models
Yonatan Belinkov | Nadir Durrani | Fahim Dalvi | Hassan Sajjad | James Glass
Computational Linguistics, Volume 46, Issue 1 - March 2020

Despite the recent success of deep neural networks in natural language processing and other spheres of artificial intelligence, their interpretability remains a challenge. We analyze the representations learned by neural machine translation (NMT) models at various levels of granularity and evaluate their quality through relevant extrinsic properties. In particular, we seek answers to the following questions: (i) How accurately is word structure captured within the learned representations, which is an important aspect in translating morphologically rich languages? (ii) Do the representations capture long-range dependencies, and effectively handle syntactically divergent languages? (iii) Do the representations capture lexical semantics? We conduct a thorough investigation along several parameters: (i) Which layers in the architecture capture each of these linguistic phenomena; (ii) How does the choice of translation unit (word, character, or subword unit) impact the linguistic properties captured by the underlying representations? (iii) Do the encoder and decoder learn differently and independently? (iv) Do the representations learned by multilingual NMT models capture the same amount of linguistic information as their bilingual counterparts? Our data-driven, quantitative evaluation illuminates important aspects in NMT models and their ability to capture various linguistic phenomena. We show that deep NMT models trained in an end-to-end fashion, without being provided any direct supervision during the training process, learn a non-trivial amount of linguistic information. Notable findings include the following observations: (i) Word morphology and part-of-speech information are captured at the lower layers of the model; (ii) In contrast, lexical semantics or non-local syntactic and semantic dependencies are better represented at the higher layers of the model; (iii) Representations learned using characters are more informed about word-morphology compared to those learned using subword units; and (iv) Representations learned by multilingual models are richer compared to bilingual models.

pdf bib
FINDINGS OF THE IWSLT 2020 EVALUATION CAMPAIGN
Ebrahim Ansari | Amittai Axelrod | Nguyen Bach | Ondřej Bojar | Roldano Cattoni | Fahim Dalvi | Nadir Durrani | Marcello Federico | Christian Federmann | Jiatao Gu | Fei Huang | Kevin Knight | Xutai Ma | Ajay Nagesh | Matteo Negri | Jan Niehues | Juan Pino | Elizabeth Salesky | Xing Shi | Sebastian Stüker | Marco Turchi | Alexander Waibel | Changhan Wang
Proceedings of the 17th International Conference on Spoken Language Translation

The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2020) featured this year six challenge tracks: (i) Simultaneous speech translation, (ii) Video speech translation, (iii) Offline speech translation, (iv) Conversational speech translation, (v) Open domain translation, and (vi) Non-native speech translation. A total of teams participated in at least one of the tracks. This paper introduces each track’s goal, data and evaluation metrics, and reports the results of the received submissions.

pdf bib
Analyzing Individual Neurons in Pre-trained Language Models
Nadir Durrani | Hassan Sajjad | Fahim Dalvi | Yonatan Belinkov
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

While a lot of analysis has been carried to demonstrate linguistic knowledge captured by the representations learned within deep NLP models, very little attention has been paid towards individual neurons. We carry outa neuron-level analysis using core linguistic tasks of predicting morphology, syntax and semantics, on pre-trained language models, with questions like: i) do individual neurons in pre-trained models capture linguistic information? ii) which parts of the network learn more about certain linguistic phenomena? iii) how distributed or focused is the information? and iv) how do various architectures differ in learning these properties? We found small subsets of neurons to predict linguistic tasks, with lower level tasks (such as morphology) localized in fewer neurons, compared to higher level task of predicting syntax. Our study also reveals interesting cross architectural comparisons. For example, we found neurons in XLNet to be more localized and disjoint when predicting properties compared to BERT and others, where they are more distributed and coupled.

pdf bib
Analyzing Redundancy in Pretrained Transformer Models
Fahim Dalvi | Hassan Sajjad | Nadir Durrani | Yonatan Belinkov
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Transformer-based deep NLP models are trained using hundreds of millions of parameters, limiting their applicability in computationally constrained environments. In this paper, we study the cause of these limitations by defining a notion of Redundancy, which we categorize into two classes: General Redundancy and Task-specific Redundancy. We dissect two popular pretrained models, BERT and XLNet, studying how much redundancy they exhibit at a representation-level and at a more fine-grained neuron-level. Our analysis reveals interesting insights, such as i) 85% of the neurons across the network are redundant and ii) at least 92% of them can be removed when optimizing towards a downstream task. Based on our analysis, we present an efficient feature-based transfer learning procedure, which maintains 97% performance while using at-most 10% of the original neurons.

2019

pdf bib
One Size Does Not Fit All: Comparing NMT Representations of Different Granularities
Nadir Durrani | Fahim Dalvi | Hassan Sajjad | Yonatan Belinkov | Preslav Nakov
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Recent work has shown that contextualized word representations derived from neural machine translation are a viable alternative to such from simple word predictions tasks. This is because the internal understanding that needs to be built in order to be able to translate from one language to another is much more comprehensive. Unfortunately, computational and memory limitations as of present prevent NMT models from using large word vocabularies, and thus alternatives such as subword units (BPE and morphological segmentations) and characters have been used. Here we study the impact of using different kinds of units on the quality of the resulting representations when used to model morphology, syntax, and semantics. We found that while representations derived from subwords are slightly better for modeling syntax, character-based representations are superior for modeling morphology and are also more robust to noisy input.

2018

pdf bib
Incremental Decoding and Training Methods for Simultaneous Translation in Neural Machine Translation
Fahim Dalvi | Nadir Durrani | Hassan Sajjad | Stephan Vogel
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

We address the problem of simultaneous translation by modifying the Neural MT decoder to operate with dynamically built encoder and attention. We propose a tunable agent which decides the best segmentation strategy for a user-defined BLEU loss and Average Proportion (AP) constraint. Our agent outperforms previously proposed Wait-if-diff and Wait-if-worse agents (Cho and Esipova, 2016) on BLEU with a lower latency. Secondly we proposed data-driven changes to Neural MT training to better match the incremental decoding framework.

2017

pdf bib
Evaluating Layers of Representation in Neural Machine Translation on Part-of-Speech and Semantic Tagging Tasks
Yonatan Belinkov | Lluís Màrquez | Hassan Sajjad | Nadir Durrani | Fahim Dalvi | James Glass
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

While neural machine translation (NMT) models provide improved translation quality in an elegant framework, it is less clear what they learn about language. Recent work has started evaluating the quality of vector representations learned by NMT models on morphological and syntactic tasks. In this paper, we investigate the representations learned at different layers of NMT encoders. We train NMT systems on parallel data and use the models to extract features for training a classifier on two tasks: part-of-speech and semantic tagging. We then measure the performance of the classifier as a proxy to the quality of the original NMT model for the given task. Our quantitative analysis yields interesting insights regarding representation learning in NMT models. For instance, we find that higher layers are better at learning semantics while lower layers tend to be better for part-of-speech tagging. We also observe little effect of the target language on source-side representations, especially in higher quality models.

pdf bib
Understanding and Improving Morphological Learning in the Neural Machine Translation Decoder
Fahim Dalvi | Nadir Durrani | Hassan Sajjad | Yonatan Belinkov | Stephan Vogel
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

End-to-end training makes the neural machine translation (NMT) architecture simpler, yet elegant compared to traditional statistical machine translation (SMT). However, little is known about linguistic patterns of morphology, syntax and semantics learned during the training of NMT systems, and more importantly, which parts of the architecture are responsible for learning each of these phenomenon. In this paper we i) analyze how much morphology an NMT decoder learns, and ii) investigate whether injecting target morphology in the decoder helps it to produce better translations. To this end we present three methods: i) simultaneous translation, ii) joint-data learning, and iii) multi-task learning. Our results show that explicit morphological information helps the decoder learn target language morphology and improves the translation quality by 0.2–0.6 BLEU points.

pdf bib
QCRI Live Speech Translation System
Fahim Dalvi | Yifan Zhang | Sameer Khurana | Nadir Durrani | Hassan Sajjad | Ahmed Abdelali | Hamdy Mubarak | Ahmed Ali | Stephan Vogel
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics

This paper presents QCRI’s Arabic-to-English live speech translation system. It features modern web technologies to capture live audio, and broadcasts Arabic transcriptions and English translations simultaneously. Our Kaldi-based ASR system uses the Time Delay Neural Network (TDNN) architecture, while our Machine Translation (MT) system uses both phrase-based and neural frameworks. Although our neural MT system is slower than the phrase-based system, it produces significantly better translations and is memory efficient. The demo is available at https://st.qcri.org/demos/livetranslation.

pdf bib
The SUMMA Platform Prototype
Renars Liepins | Ulrich Germann | Guntis Barzdins | Alexandra Birch | Steve Renals | Susanne Weber | Peggy van der Kreeft | Hervé Bourlard | João Prieto | Ondřej Klejch | Peter Bell | Alexandros Lazaridis | Alfonso Mendes | Sebastian Riedel | Mariana S. C. Almeida | Pedro Balage | Shay B. Cohen | Tomasz Dwojak | Philip N. Garner | Andreas Giefer | Marcin Junczys-Dowmunt | Hina Imran | David Nogueira | Ahmed Ali | Sebastião Miranda | Andrei Popescu-Belis | Lesly Miculicich Werlen | Nikos Papasarantopoulos | Abiola Obamuyide | Clive Jones | Fahim Dalvi | Andreas Vlachos | Yang Wang | Sibo Tong | Rico Sennrich | Nikolaos Pappas | Shashi Narayan | Marco Damonte | Nadir Durrani | Sameer Khurana | Ahmed Abdelali | Hassan Sajjad | Stephan Vogel | David Sheppey | Chris Hernon | Jeff Mitchell
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics

We present the first prototype of the SUMMA Platform: an integrated platform for multilingual media monitoring. The platform contains a rich suite of low-level and high-level natural language processing technologies: automatic speech recognition of broadcast media, machine translation, automated tagging and classification of named entities, semantic parsing to detect relationships between entities, and automatic construction / augmentation of factual knowledge bases. Implemented on the Docker platform, it can easily be deployed, customised, and scaled to large volumes of incoming media streams.

pdf bib
Neural Machine Translation Training in a Multi-Domain Scenario
Hassan Sajjad | Nadir Durrani | Fahim Dalvi | Yonatan Belinkov | Stephan Vogel
Proceedings of the 14th International Conference on Spoken Language Translation

In this paper, we explore alternative ways to train a neural machine translation system in a multi-domain scenario. We investigate data concatenation (with fine tuning), model stacking (multi-level fine tuning), data selection and multi-model ensemble. Our findings show that the best translation quality can be achieved by building an initial system on a concatenation of available out-of-domain data and then fine-tuning it on in-domain data. Model stacking works best when training begins with the furthest out-of-domain data and the model is incrementally fine-tuned with the next furthest domain and so on. Data selection did not give the best results, but can be considered as a decent compromise between training time and translation quality. A weighted ensemble of different individual models performed better than data selection. It is beneficial in a scenario when there is no time for fine-tuning an already trained model.

pdf bib
Continuous Space Reordering Models for Phrase-based MT
Nadir Durrani | Fahim Dalvi
Proceedings of the 14th International Conference on Spoken Language Translation

Bilingual sequence models improve phrase-based translation and reordering by overcoming phrasal independence assumption and handling long range reordering. However, due to data sparsity, these models often fall back to very small context sizes. This problem has been previously addressed by learning sequences over generalized representations such as POS tags or word clusters. In this paper, we explore an alternative based on neural network models. More concretely we train neuralized versions of lexicalized reordering [1] and the operation sequence models [2] using feed-forward neural network. Our results show improvements of up to 0.6 and 0.5 BLEU points on top of the baseline German!English and English!German systems. We also observed improvements compared to the systems that used POS tags and word clusters to train these models. Because we modify the bilingual corpus to integrate reordering operations, this allows us to also train a sequence-to-sequence neural MT model having explicit reordering triggers. Our motivation was to directly enable reordering information in the encoder-decoder framework, which otherwise relies solely on the attention model to handle long range reordering. We tried both coarser and fine-grained reordering operations. However, these experiments did not yield any improvements over the baseline Neural MT systems.

pdf bib
What do Neural Machine Translation Models Learn about Morphology?
Yonatan Belinkov | Nadir Durrani | Fahim Dalvi | Hassan Sajjad | James Glass
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural machine translation (MT) models obtain state-of-the-art performance while maintaining a simple, end-to-end architecture. However, little is known about what these models learn about source and target languages during the training process. In this work, we analyze the representations learned by neural MT models at various levels of granularity and empirically evaluate the quality of the representations for learning morphology through extrinsic part-of-speech and morphological tagging tasks. We conduct a thorough investigation along several parameters: word-based vs. character-based representations, depth of the encoding layer, the identity of the target language, and encoder vs. decoder representations. Our data-driven, quantitative evaluation sheds light on important aspects in the neural MT system and its ability to capture word structure.

pdf bib
Challenging Language-Dependent Segmentation for Arabic: An Application to Machine Translation and Part-of-Speech Tagging
Hassan Sajjad | Fahim Dalvi | Nadir Durrani | Ahmed Abdelali | Yonatan Belinkov | Stephan Vogel
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Word segmentation plays a pivotal role in improving any Arabic NLP application. Therefore, a lot of research has been spent in improving its accuracy. Off-the-shelf tools, however, are: i) complicated to use and ii) domain/dialect dependent. We explore three language-independent alternatives to morphological segmentation using: i) data-driven sub-word units, ii) characters as a unit of learning, and iii) word embeddings learned using a character CNN (Convolution Neural Network). On the tasks of Machine Translation and POS tagging, we found these methods to achieve close to, and occasionally surpass state-of-the-art performance. In our analysis, we show that a neural machine translation system is sensitive to the ratio of source and target tokens, and a ratio close to 1 or greater, gives optimal performance.

2016

pdf bib
QCRI @ DSL 2016: Spoken Arabic Dialect Identification Using Textual Features
Mohamed Eldesouki | Fahim Dalvi | Hassan Sajjad | Kareem Darwish
Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)

The paper describes the QCRI submissions to the task of automatic Arabic dialect classification into 5 Arabic variants, namely Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic (MSA). The training data is relatively small and is automatically generated from an ASR system. To avoid over-fitting on such small data, we carefully selected and designed the features to capture the morphological essence of the different dialects. We submitted four runs to the Arabic sub-task. For all runs, we used a combined feature vector of character bi-grams, tri-grams, 4-grams, and 5-grams. We tried several machine-learning algorithms, namely Logistic Regression, Naive Bayes, Neural Networks, and Support Vector Machines (SVM) with linear and string kernels. However, our submitted runs used SVM with a linear kernel. In the closed submission, we got the best accuracy of 0.5136 and the third best weighted F1 score, with a difference less than 0.002 from the highest score.

pdf bib
QCRI’s Machine Translation Systems for IWSLT’16
Nadir Durrani | Fahim Dalvi | Hassan Sajjad | Stephan Vogel
Proceedings of the 13th International Conference on Spoken Language Translation

This paper describes QCRI’s machine translation systems for the IWSLT 2016 evaluation campaign. We participated in the Arabic→English and English→Arabic tracks. We built both Phrase-based and Neural machine translation models, in an effort to probe whether the newly emerged NMT framework surpasses the traditional phrase-based systems in Arabic-English language pairs. We trained a very strong phrase-based system including, a big language model, the Operation Sequence Model, Neural Network Joint Model and Class-based models along with different domain adaptation techniques such as MML filtering, mixture modeling and using fine tuning over NNJM model. However, a Neural MT system, trained by stacking data from different genres through fine-tuning, and applying ensemble over 8 models, beat our very strong phrase-based system by a significant 2 BLEU points margin in Arabic→English direction. We did not obtain similar gains in the other direction but were still able to outperform the phrase-based system. We also applied system combination on phrase-based and NMT outputs.
Search
Co-authors