Fahimeh Saleh
2021
Multilingual Neural Machine Translation: Can Linguistic Hierarchies Help?
Fahimeh Saleh
|
Wray Buntine
|
Gholamreza Haffari
|
Lan Du
Findings of the Association for Computational Linguistics: EMNLP 2021
Multilingual Neural Machine Translation (MNMT) trains a single NMT model that supports translation between multiple languages, rather than training separate models for different languages. Learning a single model can enhance the low-resource translation by leveraging data from multiple languages. However, the performance of an MNMT model is highly dependent on the type of languages used in training, as transferring knowledge from a diverse set of languages degrades the translation performance due to negative transfer. In this paper, we propose a Hierarchical Knowledge Distillation (HKD) approach for MNMT which capitalises on language groups generated according to typological features and phylogeny of languages to overcome the issue of negative transfer. HKD generates a set of multilingual teacher-assistant models via a selective knowledge distillation mechanism based on the language groups, and then distills the ultimate multilingual model from those assistants in an adaptive way. Experimental results derived from the TED dataset with 53 languages demonstrate the effectiveness of our approach in avoiding the negative transfer effect in MNMT, leading to an improved translation performance (about 1 BLEU score in average) compared to strong baselines.
2020
Collective Wisdom: Improving Low-resource Neural Machine Translation using Adaptive Knowledge Distillation
Fahimeh Saleh
|
Wray Buntine
|
Gholamreza Haffari
Proceedings of the 28th International Conference on Computational Linguistics
Scarcity of parallel sentence-pairs poses a significant hurdle for training high-quality Neural Machine Translation (NMT) models in bilingually low-resource scenarios. A standard approach is transfer learning, which involves taking a model trained on a high-resource language-pair and fine-tuning it on the data of the low-resource MT condition of interest. However, it is not clear generally which high-resource language-pair offers the best transfer learning for the target MT setting. Furthermore, different transferred models may have complementary semantic and/or syntactic strengths, hence using only one model may be sub-optimal. In this paper, we tackle this problem using knowledge distillation, where we propose to distill the knowledge of ensemble of teacher models to a single student model. As the quality of these teacher models varies, we propose an effective adaptive knowledge distillation approach to dynamically adjust the contribution of the teacher models during the distillation process. Experiments on transferring from a collection of six language pairs from IWSLT to five low-resource language-pairs from TED Talks demonstrate the effectiveness of our approach, achieving up to +0.9 BLEU score improvements compared to strong baselines.
2019
Naver Labs Europe’s Systems for the Document-Level Generation and Translation Task at WNGT 2019
Fahimeh Saleh
|
Alexandre Berard
|
Ioan Calapodescu
|
Laurent Besacier
Proceedings of the 3rd Workshop on Neural Generation and Translation
Recently, neural models led to significant improvements in both machine translation (MT) and natural language generation tasks (NLG). However, generation of long descriptive summaries conditioned on structured data remains an open challenge. Likewise, MT that goes beyond sentence-level context is still an open issue (e.g., document-level MT or MT with metadata). To address these challenges, we propose to leverage data from both tasks and do transfer learning between MT, NLG, and MT with source-side metadata (MT+NLG). First, we train document-based MT systems with large amounts of parallel data. Then, we adapt these models to pure NLG and MT+NLG tasks by fine-tuning with smaller amounts of domain-specific data. This end-to-end NLG approach, without data selection and planning, outperforms the previous state of the art on the Rotowire NLG task. We participated to the “Document Generation and Translation” task at WNGT 2019, and ranked first in all tracks.
Search
Fix data
Co-authors
- Wray Buntine 2
- Gholamreza Haffari 2
- Laurent Besacier 1
- Alexandre Bérard 1
- Ioan Calapodescu 1
- show all...
- Lan Du 1