Fangkai Jiao


2024

pdf bib
Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing
Fangkai Jiao | Chengwei Qin | Zhengyuan Liu | Nancy F. Chen | Shafiq Joty
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have demonstrated significant potential in handling complex reasoning tasks through step-by-step rationale generation. However, recent studies have raised concerns regarding the hallucination and flaws in their reasoning process. Substantial efforts are being made to improve the reliability and faithfulness of the generated rationales. Some approaches model reasoning as planning, while others focus on annotating for process supervision. Nevertheless, the planning-based search process often results in high latency due to the frequent assessment of intermediate reasoning states and the extensive exploration space. Additionally, supervising the reasoning process with human annotation is costly and challenging to scale for LLM training. To address these issues, in this paper, we propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories, which are ranked according to synthesized process rewards. Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework, showing that our 7B model can surpass the strong counterparts like GPT-3.5-Turbo.

pdf bib
SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning
Bin Wang | Zhengyuan Liu | Xin Huang | Fangkai Jiao | Yang Ding | AiTi Aw | Nancy Chen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Many models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained “balanced multilingual” capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.

pdf bib
Exploring Self-supervised Logic-enhanced Training for Large Language Models
Fangkai Jiao | Zhiyang Teng | Bosheng Ding | Zhengyuan Liu | Nancy Chen | Shafiq Joty
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Traditional attempts to enhance the logical reasoning abilities of language models often rely on supervised fine-tuning, limiting their generalization to new tasks or domains. Large Language Models (LLMs), with their capacity to condense vast knowledge, can effectively tackle many tasks. Yet, our experiments reveal a gap in their performance on logical reasoning benchmarks when compared to state-of-the-art fine-tuning based models. To bridge this gap, we present LogicLLM, a first-of-its-kind, fully self-supervised framework for integrating logical reasoning capabilities into LLMs, and activating them via in-context learning. We apply this to two LLM series, FLAN-T5 and LLaMA, with parameter sizes from 3 billion to 33 billion. LogicLLM demonstrates its effectiveness through successful improvements on two logical reasoning benchmarks (ReClor and LogiQA-v2). Additionally, LogicLLM based on FLAN-T5-11B attains comparable results to ChatGPT, and evaluations with LLaMA-based models on three language understanding benchmarks (RACE, MMLU and Big-Bench-Hard) confirm that the improvements come without compromising the model’s general language understanding capabilities.

2023

pdf bib
Retrieving Multimodal Information for Augmented Generation: A Survey
Ruochen Zhao | Hailin Chen | Weishi Wang | Fangkai Jiao | Xuan Long Do | Chengwei Qin | Bosheng Ding | Xiaobao Guo | Minzhi Li | Xingxuan Li | Shafiq Joty
Findings of the Association for Computational Linguistics: EMNLP 2023

As Large Language Models (LLMs) become popular, there emerged an important trend of using multimodality to augment the LLMs’ generation ability, which enables LLMs to better interact with the world. However, there lacks a unified perception of at which stage and how to incorporate different modalities. In this survey, we review methods that assist and augment generative models by retrieving multimodal knowledge, whose formats range from images, codes, tables, graphs, to audio. Such methods offer a promising solution to important concerns such as factuality, reasoning, interpretability, and robustness. By providing an in-depth review, this survey is expected to provide scholars with a deeper understanding of the methods’ applications and encourage them to adapt existing techniques to the fast-growing field of LLMs.

2022

pdf bib
MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning
Fangkai Jiao | Yangyang Guo | Xuemeng Song | Liqiang Nie
Findings of the Association for Computational Linguistics: ACL 2022

Logical reasoning is of vital importance to natural language understanding. Previous studies either employ graph-based models to incorporate prior knowledge about logical relations, or introduce symbolic logic into neural models through data augmentation. These methods, however, heavily depend on annotated training data, and thus suffer from over-fitting and poor generalization problems due to the dataset sparsity. To address these two problems, in this paper, we propose MERIt, a MEta-path guided contrastive learning method for logical ReasonIng of text, to perform self-supervised pre-training on abundant unlabeled text data. Two novel strategies serve as indispensable components of our method. In particular, a strategy based on meta-path is devised to discover the logical structure in natural texts, followed by a counterfactual data augmentation strategy to eliminate the information shortcut induced by pre-training. The experimental results on two challenging logical reasoning benchmarks, i.e., ReClor and LogiQA, demonstrate that our method outperforms the SOTA baselines with significant improvements.

2021

pdf bib
REPT: Bridging Language Models and Machine Reading Comprehension via Retrieval-Based Pre-training
Fangkai Jiao | Yangyang Guo | Yilin Niu | Feng Ji | Feng-Lin Li | Liqiang Nie
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
A Self-Training Method for Machine Reading Comprehension with Soft Evidence Extraction
Yilin Niu | Fangkai Jiao | Mantong Zhou | Ting Yao | Jingfang Xu | Minlie Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural models have achieved great success on machine reading comprehension (MRC), many of which typically consist of two components: an evidence extractor and an answer predictor. The former seeks the most relevant information from a reference text, while the latter is to locate or generate answers from the extracted evidence. Despite the importance of evidence labels for training the evidence extractor, they are not cheaply accessible, particularly in many non-extractive MRC tasks such as YES/NO question answering and multi-choice MRC. To address this problem, we present a Self-Training method (STM), which supervises the evidence extractor with auto-generated evidence labels in an iterative process. At each iteration, a base MRC model is trained with golden answers and noisy evidence labels. The trained model will predict pseudo evidence labels as extra supervision in the next iteration. We evaluate STM on seven datasets over three MRC tasks. Experimental results demonstrate the improvement on existing MRC models, and we also analyze how and why such a self-training method works in MRC.