2024
pdf
bib
abs
EfficientRAG: Efficient Retriever for Multi-Hop Question Answering
Ziyuan Zhuang
|
Zhiyang Zhang
|
Sitao Cheng
|
Fangkai Yang
|
Jia Liu
|
Shujian Huang
|
Qingwei Lin
|
Saravan Rajmohan
|
Dongmei Zhang
|
Qi Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Retrieval-augmented generation (RAG) methods encounter difficulties when addressing complex questions like multi-hop queries.While iterative retrieval methods improve performance by gathering additional information, current approaches often rely on multiple calls of large language models (LLMs).In this paper, we introduce EfficientRAG, an efficient retriever for multi-hop question answering.EfficientRAG iteratively generates new queries without the need for LLM calls at each iteration and filters out irrelevant information.Experimental results demonstrate that EfficientRAG surpasses existing RAG methods on three open-domain multi-hop question-answering datasets.The code is available in [aka.ms/efficientrag](https://github.com/NIL-zhuang/EfficientRAG-official).
pdf
bib
abs
Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments
Sitao Cheng
|
Ziyuan Zhuang
|
Yong Xu
|
Fangkai Yang
|
Chaoyun Zhang
|
Xiaoting Qin
|
Xiang Huang
|
Ling Chen
|
Qingwei Lin
|
Dongmei Zhang
|
Saravan Rajmohan
|
Qi Zhang
Findings of the Association for Computational Linguistics: ACL 2024
Large Language Models (LLMs) have shown potential in reasoning over structured environments, e.g., knowledge graphs and tables. Such tasks typically require multi-hop reasoning, i.e., match natural language utterance with instances in the environment. Previous works adopt LLMs to incrementally build a reasoning path, where LLMs either invoke tools or pick up items by step-by-step interacting with the environment. We propose Reasoning-Path-Editing (Readi), a novel framework where LLMs can efficiently and faithfully reason over structured environments. In Readi, LLMs initially generate a reasoning path given a query, and edit the path only when necessary. We instantiate the path on structured environments and provide feedback to edit the path if anything goes wrong. Experimental results on three KGQA and two TableQA datasets show the effectiveness of Readi, significantly surpassing previous LLM-based methods (by 9.1% Hit@1 on WebQSP, 12.4% on MQA-3H and 9.5% on WTQ), comparable with state-of-the-art fine-tuned methods (67% on CWQ and 74.7% on WebQSP) and substantially boosting the vanilla LLMs (by 14.9% on CWQ). Our code will be available on
https://aka.ms/readi.
pdf
bib
abs
AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation
Jia Fu
|
Xiaoting Qin
|
Fangkai Yang
|
Lu Wang
|
Jue Zhang
|
Qingwei Lin
|
Yubo Chen
|
Dongmei Zhang
|
Saravan Rajmohan
|
Qi Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024
Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 ≈ 0.8 for scenarios with prominent gradients in search space, using only ~20% of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at https://aka.ms/autorag.
pdf
bib
abs
SELF-GUARD: Empower the LLM to Safeguard Itself
Zezhong Wang
|
Fangkai Yang
|
Lu Wang
|
Pu Zhao
|
Hongru Wang
|
Liang Chen
|
Qingwei Lin
|
Kam-Fai Wong
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
With the increasing risk posed by jailbreak attacks, recent studies have investigated various methods to improve the safety of large language models (LLMs), mainly falling into two strategies: safety training and safeguards. Safety training involves fine-tuning the LLM with adversarial samples, which activate the LLM’s capabilities against jailbreak. However, it is not always effective in countering new attacks and often leads to potential performance degradation. Safeguards, on the other hand, are methods using additional models to filter harmful content from the LLM’s response. Nevertheless, they can only reduce a limited amount of harmful output and introduce extra computational costs. Given the distinct strengths and weaknesses of both, we combine them to balance out their flaws and propose a more effective method called Self-Guard.Specifically, we train the LLM to review its responses for any harmful content and append a [harmful] or [harmless] tag to the end of the response. In this way, Self-Guard possesses the advantages of safety training, leveraging the powerful capabilities of the LLMs themselves to detect harmfulness. Besides that, it gains flexibility like safeguards, making the safety check target the output side, which makes the system less vulnerable to attack updates. Experimental results indicate that our Self-Guard can effectively defend against jailbreak attacks and will not cause LLMs’ performance degradation.
pdf
bib
abs
Introducing GenCeption for Multimodal LLM Benchmarking: You May Bypass Annotations
Lele Cao
|
Valentin Buchner
|
Zineb Senane
|
Fangkai Yang
Proceedings of the 4th Workshop on Trustworthy Natural Language Processing (TrustNLP 2024)
Multimodal Large Language Models (MLLMs) are commonly evaluated using costly annotated multimodal benchmarks. However, these benchmarks often struggle to keep pace with the rapidly advancing requirements of MLLM evaluation. We propose GenCeption, a novel and annotation-free MLLM evaluation framework that merely requires unimodal data to assess inter-modality semantic coherence and inversely reflects the models’ inclination to hallucinate. Analogous to the popular DrawCeption game, GenCeption initiates with a non-textual sample and undergoes a series of iterative description and generation steps. Semantic drift across iterations is quantified using the GC@T metric. Our empirical findings validate GenCeption’s efficacy, showing strong correlations with popular MLLM benchmarking results. GenCeption may be extended to mitigate training data contamination by utilizing ubiquitous, previously unseen unimodal data.
2023
pdf
bib
abs
Empower Large Language Model to Perform Better on Industrial Domain-Specific Question Answering
Fangkai Yang
|
Pu Zhao
|
Zezhong Wang
|
Lu Wang
|
Bo Qiao
|
Jue Zhang
|
Mohit Garg
|
Qingwei Lin
|
Saravan Rajmohan
|
Dongmei Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average due to its lack of specific domain knowledge. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, centered around Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, an area not extensively covered in general LLMs, making it well-suited for evaluating methods aiming to enhance LLMs’ domain-specific capabilities. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our method outperforms the commonly used LLM with retrieval methods. We make our source code and sample data available at: https://aka.ms/Microsoft_QA.